
Producción
Académica

Ferrer Daub, Facundo Javier

Design and evaluation of a
cloud native data analysis
pipeline for cyber physical

production systems

Tesis para la obtención del título de posgrado de
Magister en Dirección de Empresas

Director: Srur, Leandro

Documento disponible para su consulta y descarga en Biblioteca Digital - Producción Académica, repositorio
institucional de la Universidad Católica de Córdoba, gestionado por el Sistema de Bibliotecas de la UCC.

Esta obra está bajo licencia 2.5 de Creative Commons Argentina.

Atribución-No comercial-Sin obras derivadas 2.5
C C |®@©I

ÉICDA
U'IVnSIDAD
CATOLICA .'i
c Okcxjüa

UNIVERSIDAD CATOLICA DE CORDOBA

INSTITUO DE CIENCIAS DE LA ADMINISTRACIÓN

TRABAJO FINAL DE
MAESTRÍA EN DIRECCIÓN DE EMPRESAS

DESIGN AND EVALUATION OF A
CLOUD NATIVE DATA ANALYSIS
PIPELINE FOR CYBER PHYSICAL

PRODUCTION SYSTEMS

AUTOR: FACUNDO JAVIER FER R ER DAUB
EMAIL: facundo.j.ferrer@gmail.com
DIRECTOR: Leandro Srur

CÓRDOBA 2017

mailto:facundo.j.ferrer@gmail.com

ABSTRACT

Since 1991 with the birth of the World Wide Web the rate of data growth has

been growing with a record level in the last couple of years. Big companies

tackled down this data growth with expensive and enormous data centres to

process and get value of this data. From social media, Internet of Things

(IoT), new business process, monitoring and multimedia, the capacities of

those data centres started to be a problem and required continuos and

expensive expansion. Thus, Big Data was something that only a few were

able to access. This changed fast when Amazon launched Amazon Web

Services (AWS) around 15 years ago and gave the origins to the public cloud.

At that time, the capabilities were still very new and reduced but 10 years

later the cloud was a whole new business that changed for ever the Big Data

business. This not only commoditised computer power but it was

accompanied by a price model that let medium and small players the

possibility to access it. In consequence, new problems arised regarding the

nature of these distributed systems and the software architectures required

for proper data processing. The present job analyse the type of typical Big

Data workloads and propose an architecture for a cloud native data analysis

pipeline. Lastly, it provides a chapter for tools and services that can be used

in the architecture taking advantage of their open source nature and the cloud

price models.

UNIVERSIDAD CATOLICA DE CORDOBA

INSTITUTO DE CIENCIAS DE LA ADMINISTRACION

TRABAJO FINAL DE
MAESTRÍA EN DIRECCIÓN DE EMPRESAS

DESIGN AND EVALUATION OF A
CLOUD NATIVE DATA ANALYSIS
PIPELINE FOR CYBER PHYSICAL

PRODUCTION SYSTEMS

AUTOR: FACUNDO JAVIER FERRER DAUB
DIRECTOR: LEANDRO SRUR

CORDOBA 2017

CONTENTS

I Introduction 4
1.1 Organization ... 4
1.2 Problem statement... 4
1.3 State of the art and open problems.. 6

II Data Types and Sources 8
2.1 Data types .. 8

2.1.1 Nondependency-oriented data .. 9
2.1.2 Dependency-oriented d a t a .. 11

2.2 Data properties ... 12
2.3 Data sources ... 14

2.3.1 Information Technology (IT) .. 14
2.3.2 Physical W o r ld ... 16

2.4 Metadata ... 17
2.4.1 What means metadata... 17
2.4.2 Importance of m etadata.. 18

III Workloads 19
3.1 Streams and Batch ... 19

IV Architecture Building Blocks 24
4.1 Introduction .. 24
4.2 Building Blocks ... 25

4.2.1 Acquisition and Recording... 25
4.2.2 Extraction, Cleaning and Annotation................................... 27
4.2.3 Integration, Aggregation and Representation..................... 27
4.2.4 Modeling and Analysis... 28
4.2.5 Interpretation.. 29

V Architecture Allocation to Tools and Services 30
5.1 Tools.. 30

5.1.1 Apache F lu m e ... 30
5.1.2 Apache Sqoop ... 31
5.1.3 Apache Kafka ... 32
5.1.4 Apache Storm ... 33
5.1.5 Apache H a d o o p .. 33
5.1.6 Apache Spark ... 35

1

5.1.7 Apache F lin k ..36
5.1.8 Apache Hive ..37
5.1.9 Apache Imapala ..37
5.1.10 Apache P ig ...38

5.2 Cloud Providers and Services...39
5.2.1 A W S S 3 ...41
5.2.2 AWS Kinesis F a m ily ..41
5.2.3 AWS Lambda..41
5.2.4 AWS Elastic M apR educe...42
5.2.5 AWS Q u icks igh t..42
5.2.6 DataTorrent...43

VI Summary and Outlook 44
6.1 Conclusions44
6.2 Limitations45
6.3 Outlook45

2

3

I. INTRODUCTION

1.1 Organization
This dissertation shows how a cloud native architecture, can help system

designers to implement analytic data pipelines. This thesis is organized as fol-
lows. Chapter 1 explains the statement of problem, basic principles of data ana-
lytics are outlined in order to better define specifics aspects of the data pipeline
modeling addressed in this work. In addition, the current state of the art and the
open problems are explained here too.

Chapter 2, introduces the different data types that are described in the the­
sis. Among them, the related data sources reviewed are explaining here. Finally,
a mention to the importance of the metadata, the data about the data, is included.

Handling of the different data types can be done in two main ways, stream
and batch processing. The characterization of these workloads, with its related
data pedigree is discussed in Chapter 3. Furthermore, the privacy of data col-
lected and processed is an important area explained as well in this chapter.

In Chapter 4 describes, the architecture building blocks, not only from a
technical point of view but in regards of the business value of the presented ar­
chitecture; and the importance of a cost-efficient pipeline by a proper selection of
the building blocks.

Chapter 5 and 6, try to give a short overview of different tools and services
that can be used in each of the different phases of the data pipeline. Besides,
an experimental setup of the data pipeline is done with the analysis of real-world
data-sets and its corresponding results.

Chapter 7 discusses the results of the whole work as well as presents
directions for future work. Last but not the least, other topics like, data backup,
replication and normalization are contained within the Appendices.

1.2 Problem statement
In 1991 computer scientist Tim Berners-Lee announced the birth of what

would become the World Wide Web as we know it today, interconnected web of
data, accessible to anyone from anywhere. Since then, an explosion of informa-
tion took place in the digital world (Berners-Lee, 1991, p. 3).

Almost ten years later, Doug Laney, was defining data growth challenges
and opportunities as the three of what will come to be the commonly-accepted
characteristics of Big Data, volume, velocity and variety (Laney, 2001, p. 70).

4

And later, some scholars added veracity and value as a 5 Vs model (Assuncao,
Calheiros, Bianchi, Netto, & Buyya, 2015). IDC started a research in 2005 on
how big is the digital world and in the partial results published in the 2007 report,
the size by 2006 was 161 exabytes and forecasted to be 988 exabytes in 2010
(J. F. Gantz & Reinsel, 2007, p. 2). On a later report from the same research in
2012, the forecast was revised and the actual growth was 1.227 exabytes. And
the research forecast 40.000 exabytes by 2020 (J. Gantz & Reinsel, 2012, p. 1).

We are in a new era in which the data captured by organization has being
continuously increasing in volume and detail. This increase came by the hand of
the rise of social media, Internet of Things (IoT), business process, sensors, mon-
itoring and multimedia, in either structured or unstructured format. Furthermore,
the rate of data creation is occurring at a record levels. The variety, volume, and
velocity of this data is such that is exceeding the ability of researchers to design
appropriate cloud computing platforms for its analysis (Hashem et al., 2015, p.
99).

Cloud computing is the next generation of IT industry and is growing at
a fast pace (Hashem et al., 2015, p. 101) Cloud computing, as defined by the
National Institute of Standards and Technology (NIST), is ”a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction” (Mell & Grance, 2011, p. 6).

Cloud computing is being used by many organizations but still there are
many issues without a proper solution. Big data in the cloud is still in its young
stages as new challenges continue to arrive from applications by organizations
in many aspects such as scalability, data integrity, privacy, and regulatory gover-
nance (Hashem et al., 2015, p. 109).

In the industrial side, these changes has come along with a big revolution.
Back then in the late 18th century, the advent of the steam engine brought us the
first industrial revolution (Arvind, 2016, p. 1). Decades later, the second industrial
revolution took place with introduction of manufacturing lines, electricity, inter-
nal combustion engine, and mass production systems (Atkeson & Kehoe, 2001).
Lastly, in the 20th century, the technological advances in computer hardware and
the creation of the Internet have changed the traditional business practices, and
companies have been forced to adapt themselves one more time to these new
changes (Smith, 2001).

The fourth industrial revolution is starting. Countries like Germany, started
to talk about Industrie 4.0 as the underlying concept that support this current
industrial revolution. It is based on the evolution of embedded systems to Cyber-

5

Physical Systems (CPS) or Cyber-Physical Production Systems (CPPS) 1, the so
mentioned Smart Factories, and semantic machine-to-machine communication.
These changes represent a paradigm shift from current centralized manufacturing
process to a decentralized, autonomous real-time production (MacDougall, 2014,
p. 6). Smart factories will enable manufacturing units to have higher flexibility
in terms of manufacturing processes, the customization of the products and the
scale and scope of output (Arvind, 2016, p. 2).

To enable Smart Factories in a real decentralized way, the CPPS must
interchange enormous amounts of data. Thus, is a key competitive advantage
being able to understand and explore this data and to gain insights from these
type of systems. Analytics involve techniques of data mining, text mining, statis-
tical analysis, explanatory and predictive models, and advanced visualisations to
let decision makers take informed decisions (Assuncao, Calheiros, Bianchi, Netto,
& Buyya, 2013, p. 3).

However, implementing a system capable to use analytics still requires a
hard effort, expensive software and hours, or even days, to develop a solution that
fit specific business needs (Assuncao et al., 2013, p. 4). Furthermore, many of
these solutions are tradeoff between current solutions and native cloud designs.
This work pretends to highlight the issues of developing a cloud based architec­
ture for analytics of CPPS and provide the building blocks for a cloud native data
analysis pipeline.

1.3 State of the art and open problems
Given the broad surface of big data, there are many different architectures

out there. The presented state of the art architectures are based on a literature
review and present an overview of emerging data analysis platforms. For data
analysis different architectural concepts are defined. For example, traditional re-
lational data warehouse systems are the oldest but most established architec­
ture. With the upcoming of the years and the growth of data, these systems have
evolved into massively parallel processing systems (MPP) (Begoli, 2012).

Complex and computationally intensive problems require specialized plat­
forms. High Performance Computing (HPC) is the discipline that study those
problems. HPC Platforms usually scales to thousands of cores and can be mixed
with Graphic Processing Units (GPUs) for extra intensive computation. They re­
quire low-latency and high bandwidth networks because most of the problems
needs massive parallelism and data transfers (Begoli, 2012).

1 Despite CPS and CPPS have not exactly the same meaning, they will be used interchange-

ably during this work. When the term s may introduce some m isunderstanding they will be clarified
properly.

6

Another technology used is the NoSQL databases. They offer a highly
scalable and flexible data store and a decent querying system. In this category
we can find three main database models, key/value stores, document stores, and
graph databases.

Originally pioneered by Google, MapReduce is a distributed computing
model that provides primitives for massively scalability and fault-tolerant batch
computation (Marz & Warren, 2015). It is today one of the most trending archi-
tectures. Apache Hadoop (hadoop2016apache, 2016) is a distributed data store
that allows for the distributed processing of large data sets. Hadoop achieves this
through a set of modules/libraries, one of those is the Apache MapReduce that
allows the execution of MapReduce jobs(Grover, Malaska, Seidman, & Shapira,
2015).

Most of the previous solutions have one factor in common, they process
data in batch mode. Nowadays, with the upcoming of the Industrie 4.0 and CPSs,
the platforms should be prepared for streaming type of computation. Thus, some
authors have developed new architecture based on traditional MapReduce and
extending it to support this streaming nature of the data like the Lambda archi­
tecture. In a simplistic explanation, the architecture splits the processing of the
information, and one part precomputes batch views of the complete data set,
when the other part only computes real-time views of the data that arrived af-
ter the batch computation process started, as one of the parts computes only a
minimal part of the data set in comparison to the other the near real-time effect
is achieved. Finally, when a query is received it is fulfilled as a function of both
views, the real-time and the batch one (Marz & Warren, 2015).

Even all these different solutions are not enough for the fast growing of
information. Current data pipelines have problems, or they are too specific and
expensive to being used by majority, like HPC systems, or others ”cloud” available
and cheaper do not support all application’s domains like Hadoop and MapRe-
duce’s based technologies. Or even improvements like Lambda architecture to
cover most application domains have its own set of pitfalls, for example, have to
keep two source code bases (Chen, Alspaugh, & Katz, 2012) Even new problems
arise when these solutions are deployed in the cloud, like privacy and security of
the data (Assuncao et al., 2013).

While there is no architecture to rule them all, it is common to get over-
whelmed when trying to design a data pipeline. This even get worse when the
data come from Cyber Physical Systems and when the requirements are based
on a cloud native solution. The proposed pipeline provides a guide for helping
architects and data scientists to design and improve their own solutions.

7

II. DATA TYPES AND SOURCES
The presented data pipeline makes sense in the context of the modern

age, where most of CPSs generate some form of data either for analysis or diag-
nostic purposes. This caused a deluge of data, which has been rising to reach
petabytes or exabytes orders of magnitude (Aggarwal, 2015, p. 1).

The advancements in technology and the ”technologization” of every as-
pect of human modern life with the advent of CPSs bring as a consequence a del­
uge of data. Therefore, makes sense to review whether one can extract valuable
insights from the data to accomplish application specific objectives(Aggarwal,
2015, p. 2).

The quality of this raw data can be structured, semi-structured, unstruc-
tured, or even in a format that is not suitable for being processed by automated
computer program. For example, data collected manually might be ingested from
heterogeneous sources in multiple formats and yet somehow requires to be pro­
cessed by computers systems to gain useful insights (Aggarwal, 2015, p. 2).

To address this issue a processing pipeline is commonly used to collect,
clean, and transform data before being processed for insights. Collecting, clean-
ing, and preparing the data are not trivial tasks, thus, some considerations will be
mentioned in Chapter III.

The data may be conformed by different formats or types. The type may
be quantitative representation (e.g. age), categorical (e.g. blood type, HTTP
request, etc.), text, spatiotemporal, or graph. Even though the form of data most
common founded is multidimensional, every time the proportion of more complex
types of data is increasing (Aggarwal, 2015, p. 2).

The importance of these data types regards in the algorithms used to pro-
cess them. The portability of algorithms between different data types is merely
conceptual, and is not the same from a practical perspective point of view. The
truth is that the behavior of algorithms might be considerably affected by a specific
data type (Aggarwal, 2015, p. 3).

2.1 Data types
In the previous chapter we presented the Vs model of the data. One of

those Vs is Variety. In regards to it, we can classify the data types in three main
categories:

• Structured: data models and formal schema given (e.g. RDBMS, etc.).

8

• Semi-structured: there is no rigid data model structure (e.g. JSON, XML,
etc.).

• Unstructured: no data model is predefined (e.g. books, video, etc.).

Large part of the data produced by CPS it is argued to be either semi-
structured or unstructured (Assuncao et al., 2015, p. 9).

This classification does not come alone. We can make a further classifi-
cation regarding the complexity of the data involved. Generally speaking, we can
define two types of data:

1. Nondependency-oriented data: it refers to the most commonly and simple
data type found. This includes text or multidimensional data. For this type of
data, each record does not have any named dependencies between either
the data items or the dimensions. An example can be a demographic set
of records about individuals containing their name, state, age, and gender
(Aggarwal, 2015, p. 6).

2. Dependency-oriented data: in the other hand, this data type may have im-
plicit or explicit relationships between the records. An example of explicit
relationship can be found in a social network where the data items are con-
nected together between given relationships (also called edges). On the
other side, an implicit example are time series in which successive records
coming from a sensor are related implicitly by the time attribute (Aggarwal,
2015, p. 6).

It is key to understand the different types of data because of the consider­
able impact that has in the architecture. For example, it is not the same in terms
of size to store a number represented as a string than store it represented as an
integer, thus, storage of data can be substantially impacted if there is no proper
understanding of data types.

2.1.1 Nondependency-oriented data

Also referred to as multidimensional data, this is the most common and ele-
mentary form of data. This data typically contains a set of data points. Depending
on the application a data point can also be named as a record, transaction, entity,
tuple, or object. Each tuple enclose set of attributes, which are also referred to
as dimensions, features orfields. Since we found these terms all around the bib-
liography we will follow the same approach and they will be used interchangeably
overall this work (Aggarwal, 2015, p. 7),

In Table II.1 the dimensions (or attributes) of the records are of two differ­
ent data types. Age attribute is considered numerical because its values have a

9

Name Age Gender Race ZIP code

Peter S. 23 M Native American 10513
Shang L. 15 F Asian 12444
Greg M. 32 M African American 60414
Mary M. 78 F Caucasian 60411
Widia L. 36 M East Indian 902510

Table II.1: Multidimensional data set

natural ordering. These kind of attributes are referred to as quantitative. From a
statistical point of view, this sub-type is particularly convenient for analytical pro­
cessing since its easiness to work with, and as it was aforementioned, quantitative
data is considered the most common one (Aggarwal, 2015, p. 7).

Gender, race and ZIP code in Table II.1 have discrete unordered values.
These attributes that contain discrete values without a natural order are referred
to as categorical attributes. In our Table II.1 we have a mix, both numeric and
categorical features, thus, unsurprisingly it is considered a mixed-attribute data
set.

A special case of quantitative data or categorical data is binary data. In
regards of categorical data, it can take one of two discrete values, and in regards
to quantitative data, an order exists between those values. For example, in our
table, gender can be considered as a special case and it is possible to force
an artificial ordering and be treated as binary data or quantitative data and use
algorithms meant for this type (Aggarwal, 2015, p. 8).

Lastly, text data can be considered in this category or as dependency-
oriented type depending on how it is represented. If we considered in its raw form,
a document will be treated as a string, thus, a relationship exist between data
items, this will be explained later in this chapter. Text are usually not represented
as strings but as a vector-space representation, where the frequencies of the
words are the valuable information used.

It has its disadvantages as the precise ordering of the words is not saved
when representing text in this way, but these frequencies can be used to derive
other information like, frequencies of the words or the length of the document.

The vector-space form might be considered as quantitative data but this
falls in a inefficient way of handling due data sparsity phenom. Commonly, a bag-
of-words is a more efficient representation and frequencies of these words are
explicitly maintained. Specialized methods are used for processing text data due
data sparsity issues (Aggarwal, 2015, p. 8).

10

2.1.2 Dependency-oriented data

The discussion in the aforementioned chapter is most about the non-dependency
scenario in which each data point can be treated independently. In practice, re­
lationships links like temporal, spatial or explicit network connections may occur
(implicitly or explicitly) between data points. The knowledge of those relationships
change the insights gained from the data.

Aggarwal categorize these type of relationships as:

1. Implicit dependencies: the relationships between data points are known to
”normally” exist in the domain, but are not explicitly stated. An example in
CPS field can be temperature sensor values, in which successive readings
are likely to be similar and considerably different values are interesting to be
analyzed (Aggarwal, 2015, p. 9).

2. Explicit dependencies: in this case, specific relationships or ”edges” are
given between data points in graph data types. Social network relationships
are a common example in this field (Aggarwal, 2015, p. 9).

Like in the previous section, here the most common sub type of data en-
countered is time-series data. Time-series contains values that are measured in
a continuous way over time. Environmental sensors will measure humidity, tem­
perature, etc while electrocardiogram devices will do the same for heart rhythm
of a patient. The data points here have an implicit dependency in regards of the
time variable.

This temporal dependency may give useful insights in regards to other
attributes of the data. Without entering in deeper explanation of contextual and
behavioral attributes, we may have for example two sensors, one that measures
temperature and other humidity at a given time base. The relation between the
variation between the attributes for a given record, and within successive readings
may give us valuable insights that could not be gained in a non-dependency data
set in which those values would have been treated independently. This data set
is then referred to as a multidimensional time series (Aggarwal, 2015, p. 10).

Therefore, and in a analog way to categorical data types, if the data points
received over time are of a discrete nature, we get a discrete sequence data type.
For example, consider web server sending log events, each log line may contain
IP address of the request, and the resource requested, and of course the time
stamp for each data point (Aggarwal, 2015, p. 10).

If we consider changing the time attribute as the implicit relationship be­
tween data items for a spatial attribute we get a spatial data set. In this type of
data, the dependencies between attributes and records are related to a spatial

11

location. An example can be the measure of environmental attributes like tem-
perature in the sea surface.

There is a particular form in which time-series and spatial data are mixed,
given spatiotemporal data, which the relationship between attributes is given by
both, spatial and temporal attributes. For the previous example, we can measure
the sea-surface temperatures over time (Aggarwal, 2015, p. 12)

Lastly, graph data type is given by a set of nodes (data items) and the
relationships between them are explicitly defined by edges. This kind of repre-
sentation is useful for solving similarity-based data mining applications on other
data types (Aggarwal, 2015, p. 14).

2.2 Data properties
In the previous section we discussed about data types, or one of the big

data Vs, variety. In this section, we try to give some hints of others properties
of the data. When we refer to ”big” data is not only for the volume (as we men-
tioned in the introduction in orders of terabytes, petabytes or even exabytes) but
data can be ”big” in other ways. For example, one can measure how big data is
in regards of lasting significance of an observation of a unique event. Further,
the descriptive challenges required can also give some criteria to call it big, like
a complex experimental setup. Thus, the value of the data can be given by how
big it is. To keep this value, a proper handling and conservation of the data is
required. Data loss effects can be in some cases only economics and the exper-
iments can be run again, but in other cases, the data loss can be an opportunity
lost permanently (Lynch, 2008, p. 28).

At the heart of the data analysis pipeline is the master dataset. This master
dataset is the base source of data on which all the other data will be derived from.
Thus, it is vital to protect it from inevitable risks like technological issues as power
outages or hard disk failing, or human errors. To accomplish this, a fault tolerant
system is required and becomes essential understand how the data set is stored,
not only the physically store but the data model used for it (Marz & Warren, 2015,
p. 27-28).

We have being used information, data, master data, interchangeably until
now, but a proper definitions of terms is necessary here because they will become
indispensable later (Marz & Warren, 2015, p. 29):

• Information: the colloquial use of the word data can be confused with in­
formation, but the last one implies a general collection of knowledge that is
relevant to your system

12

• Data: is the base of the data pipeline. It can also be referred as master
data, and it is the information that can not be derived from anything else.

• Queries: are the questions you ask to your data.

• Views: are partial information that was derived from the data to help answer
the queries.

Marz et. al. argued the benefits of using a factual based model for data
analytic processing and we decided to use the same as it seems to have key
properties that suit best cloud specific requirements. In the factual model every
piece of information is considerd a fact. These facts are the fundamental pieces
of the pipeline and have key properties: rawness, immutability, and perpetuity.

Rawness
This property refers to the ability of the data to answer queries. Thus, the

”rawer” the data, the more queries can be answered. As an example, in a social
network application, we can decide to store for each users the ids of her friends,
then we can answer a query on how many friends she has but our system can
not answer question on when the user A became friend of other user B , or if the
user A had previously as a friend user C. If the system would have stored more
information like dates and each friend (or unfriend) event those queries could
have been solved (Marz & Warren, 2015, p. 30).

Naturally, if the system is capable to store rawer data then more questions
can be answered in the future, even those questions that where not known in
advance. However this comes with a trade-off, the rawer data, typically the more
storage is required. Nevertheless, storage is cheaper than processing or data
movement, therefore the data pipeline should be designed with this consideration
in mind (Marz & Warren, 2015, p. 31).

Immutability
Data is immutable. There is no update nor delete of data, only new data is

added. This give us two advantages (Marz & Warren, 2015, p. 34):

• Human-fault tolerance: human errors happens, thus, human-fault tolerance
is a must in the data pipeline. With an immutable model, the impact of
human mistakes is limited. There is no option of update a good data item
with bad data (or completely delete it), and if new bad data is added, it can
be later removed and the queries reprocessed.

• Simplicity: in an immutable model, as the only operation is to add data items
there is no need to index the data which is a big simplification.

Perpetuity

13

This property is a consequence of the previous one and implies that each
data item is eternally true. This is possible due the immutability characteristic of
the data, as we add new data we can tag it with a time-stamp given then a context
in which the data is true. New data can arrive later and it will still be true in the new
context. We can think this as learning history facts, they happened some time in
the past in which they were true and the record will be eternally true as long as it
is tight with the time-stamp. There are some corner cases, in which data deletion
may be required. For example data retention policies, where low value data items
are removed; also legal regulations may impose compulsory data deletion under
given conditions. In both cases, removing data is a statement about the value of
the data, either you must delete it or it does not provide enough value in regards
the storage cost (Marz & Warren, 2015, p. 36).

2.3 Data sources

2.3.1 Information Technology (IT)

Until here we have defined in a more or less complete way the most impor-
tant characteristics about data types and properties. In this section we will focus
on the data sources used in the presented work.

As it was mentioned early, the 4th industrial revolution brings new chal-
lenges to the companies on how they should handle their IT systems. Traditional
IT systems where separately managed from production systems. Thus, the in-
teraction between both worlds were handled by humans. Industrie 4.0 changes
this approach with the inclusion of the aforementioned Cyber-Physical Systems
(CPS).

These systems are the fusion of the physical and virtual world. Lee de­
scribes CPS as: ”integrations of computation and physical processes. Embedded
computers and networks monitor and control the physical processes, usually with
feedback loops where physical processes affect computations and vice versa”
(E. A. Lee, 2008).

This integration means that current IT systems should interact with the
physical world in some way. Hermann identified some design principles for In­
dustrie 4.0; these 6 design principles include, interoperability, virtualization, de-
centralization, real-time capability, service orientation, and modularity. In some
way these principles support companies in identifying possible pilots that later
could be implemented later (Hermann, Pentek, & Otto, 2016, p. 11).

The implications of the above are used to identify IT data sources. Enter­
prise resource planning software (ERP), like SAP ERP, allows organizations to
manage business operations. This kind of software is present in most of medium-

14

big size manufacturing companies (K. E. Kurbel, 2013, p. 127). The SAP ERP
solution map can be seen on Figure 11.1.

End-user Service delivery

Analytics Financial analytics Operations analytics Workforce analytics

Financiáis
Financial

supply Chain
management

Treasury Financial
accounting

Management
accounting

Corporate
governance

Human
capital
management

Talent management Workforce process
management Workforce deployment

cozra>
CD
C L
<D
<D1
8
CL<D
<
CD

Procurement
and logistics
execution

Procurement
Inventory and

warehouse
management

Inbound and outbound
logistics

Transportation
management

co>
-o
<D

I
I
CD

Product
development
and
manufacturing

Production
planning

Manufacturing
execution

Product
development

Life-cycle data
management

Sales and
service

Sales order
management

Aftermarket sales
and service

Professional-service
delivery

Corporate
services

Real
estáte

manage­
ment

Enterprise
pccpt

Project Environment,
and T ravel health, Qualityaoov i

manage­
ment

portfolio manage­ and safety manage­
manage­ ment compliance ment

ment management

Global
trade

services

Figure II.1: SAP ERP solution map (SAP 2012e)

As it can be seen, SAP ERP, covers vastly most of the resource planning
functions of a company. Thus, its an excellent source of data from the IT world. It
is worth mentioned that traditional paradigms in which ERP systems were based
like ”centralized planning and scheduling” are inefficient and against the Industrie
4.0 design principles (Spath, Gerlach, Hammerle, Schlund, & Strolin, 2013, p.
22).

This paradigm shift to a decentralized coordination of self-controlled and
autonomous processes implies some kind of lost in relevance in systems like SAP
ERP that will must delegate process like inventory management, workforce and
plan capacity allocation among others (Spath et al., 2013, p. 23).

Nevertheless, the inclusion of CPS and the SmartFactory vision is not likely
to happen in a short period of time. Bauernhansl refers to three generations of
CPS devices, and only the last one is capable of analyze data and being network
compatible to interact with IT world (Bauernhansl, 2014, p. 16-17). Still the de­
vices will have some autonomy but ERP systems will still have some importance
role. For example, in a manufacturing company, engineers can use computer sys­
tems to design a new product and then ERP system to create the corresponding

15

parts required for production, and the Bill Of Materials (BOMs).
This is a valid source of information in CPS environments and it will be

required also in our data pipeline to solve further workloads defined in Chapter
III. Some characteristics that makes this data source likely to be used is not only
the valuable insights that can be obtained but the easiness of ingestion of the data
in the pipeline. Lets think that systems like SAP ERP properly handles ingestion
of data in their RDBMS that by its nature will store the data in a structured format.
Furthermore, some data conversions are automatically handled by the system,
like strings to integer conversions, or veracity of information that is validated at
data input time.

2.3.2 Physical World

The Cyber Physical Systems will connect the cyber world with the physical
world. We have previously identified one data source from the cyber world as
the integration of IT Systems like SAP ERP. From the physical world perspective,
three generations of CPS devices are identified by Bauernhansl. In the first gen-
eration, CPS devices uses technologies like RFID for unique identification tasks
but analytics and storage are handled in a centralized way. The next generation
adds sensors for measure the physical world and actuators to interact with it. Fi-
nally, the third generation, includes storage, processing and network connection
capabilities (Bauernhansl, 2014, p. 16-17).

This last generation is capable to capture data from the real world with their
equipped sensors, process them, interact with other system to take decisions,
and finally interact with the real world again through the actuators (Spath et al.,
2013, p. 23). For example, an intelligent bin (iBin) that has an infrared camera
incorporated that allows it to determine the amount of C-parts in it. When the
amount of parts cross some security stock limit the bin can automatically order
via RFID new parts in real-time (Gunthner & Klenk, 2014, p. 307).

Another example can be a CPS in a production line, the CPS measures the
rate in which raw materials or products part are being delivered into the machine
and the rate of the final products at the end of the machine among the serial num-
ber of each product, because of its processing capabilities it can calculates the
production time for each product and also it has the knowledge of the BOMs and
the estimated production times included in the order. All this information is sent
into the pipeline and meaningful insights can be obtained, like anomaly detection
on real-time basis for unusual production times, or if other CPS with temperature
sensors built-in also provides information, correlations of how temperature affect
the production rate can be determined.

There are some considerations with these data sources. CPSs are from

16

different kinds, and have different capabilities. Moreover, due its nature to mea­
sure or capture different aspects of the real world the data provided is not easily
processed as is. This type of data source, unlike the previous one coming from
the cyber world, is mostly semi-structured or unstructured. Further clean up, error
cleaning, and preprocessing must be done in order to be ready for analysis.

2.4 Metadata
In the previous sections we have discussed many aspects of the data,

as its types, properties, and sources, but in data management systems it exists
other type of ”data” usually as important as the data itself, and this is the metadata
related to the data. In the presented environment it becomes critical to understand
and take decisions related to metadata (Grover et al., 2015, p. 31).

2.4.1 What means metadata

Generally speaking, metadata refers to data about the data. There are
many things that can be stored in regards to master data, to list a few:

• Logical data sets metadata We have not given too many details about data
storage yet, but in a distributed file system one can have multiple logical data
sets. Related metadata to them includes location of the data set, schema
information, partitioning and sorting properties, and/or format of the data
set. Usually this metadata can be stored in a metadata repository.

• HDFS files metadata

Once more, in a distributed file system, information like location in the data
nodes of the blocks of a file, permissions and ownership are part of meta-
data. In Hadoop installations this is stored and managed by the NameNode.

• Data ingestion and transformations metadata

Information like which users created a given data set, or the pedigree of the
data, how long it took the transformation layer to create it, or the size of the
data ingest are included within this type.

• Data set statistics

Lastly, statistical information like, total number of rows in the data set, data
distribution histograms and boundaries values are included here. This infor­
mation can be used for optimization purposes in execution plans for exam-
ple.

17

2.4.2 Importance of metadata

There are three main reasons to give such importance to the metadata
(Grover et al., 2015, p. 32)

• In distributed file systems the handling of files is not as the same as a normal
operating system file system. To let the users interact with the data without
worrying about where or how the data is stored, the role of metadata is key.

• To handle scalability and fault-tolerance data sets might be partitioned and
sorted, information about how these task were performed can later be lever-
aged by various tools while ingesting and querying data.

• It allows you to perform data discovery and lineage analysis.

This section has been just a mention about metadata, but it is a big and
interesting topic that deserves its own study. Dismally it is out of the scope in the
present work.

18

III. WORKLOADS
After we have defined the data sources and the data types of our pipeline,

then we need to define which are the questions (queries) that we will ask to this
data. Thus, we need to define the workloads of the architecture. CPSs have intro-
duced new type of workloads, or the need to mix different workloads for a single
query of the data. Therefore, a categorization of the workloads is necessary.

Depending on which is the criteria used for the categorization we can di­
vide workloads by application domains, periodicity of data processing, microar-
chitectural behaviors, etc (Jia et al., 2014). We selected periodicity of data pro­
cessing as criteria for categorization because it seems to fit very well the nature of
data in CPS and Smart Factories. From this criteria, workloads can be separated
in two main categories, streams and batch processing.

3.1 Streams and Batch
Periodicity of data, also called timeliness ofdata, may refer to the period of

time from when data is available for ingestion to when it is accessible for process­
ing. This is a very important factor because the ingestion layer in the architecture
will have a big impact on how this data is stored and how it be ingested.

Although, we should differentiate this periodicity of data, with the period­
icity of data processing. When we refer to batch or streaming processing, we
refer on how fast our events are processed but may differ on how fast the data is
available. Just to give a small example to clarify this point. Think on a web server
application hosted on hundreds of web servers generating gigabytes of logs per
day. Thousands of entries per seconds are available and thus pushed to the data
pipeline. From this point of view, it is valid to consider this as an stream of data
(we could have the same information pushed in batches once per hour). However,
we can have two different types of workloads, a batch workload, that run every
hour to do a clickstream analysis, and a stream workload, that run continuously,
to perform a fraud detection analysis(Grover et al., 2015).

Thus, even though we have a stream as a data input and we need to
properly handle the ingestion of data, we can have a batch or a stream or both
types of workloads. This point will get more clarified in the following chapter when
we present the layers of the data pipeline and we will define the scope of the batch
and streaming workloads.

After this clarification, it is common to have further categorizations of the
batch and streaming workloads. Hence, we can subsequently classify the work-

19

loads in:

• Macro batch: or commonly batch is when data is processed in ”batches”,
usually from 15 minutes to hours. As we mentioned early, clickstream anal­
ysis can fall into this category.

• Microbatch: another category is the events fired off every 2 minutes but not
more than the Macro batch. These workloads require different implications
in the design of the pipeline thus are separated of common batch but are
not fast enough to be considered streaming.

• Near-Real-Time or Real-Time: commonly known as streaming, in this cat­
egory we will have data delivered under 2 minutes to even less than 100
milliseconds for real-time cases. Our previous fraud detection analysis is a
good example that falls in this category.

An important clarification is that when we move from macro-batch towards
real-time, the complexity of the architecture, and the implementation costs in-
crease substantially (Grover et al., 2015).

The importance on understanding the workloads relays on several design
factors. In the previous chapter, we have talk of some considerations of data stor­
age regarding the data type. Workloads affect also data storage, as the require-
ments move towards real-time category we should start discarding permanent
storage as the first option, and think more about in-memory-first solutions and
permanent storage as second (Marz & Warren, 2015).

Furthermore, in cloud based architectures, bandwidth is a critical factor,
not only for the performance and velocity of data delivery but for its associated
costs. For example, depending on how fast the data is delivered and its size,
may be better to compress it before being sent over the wire. In the other hand,
streaming workloads, may need a more real-time processing and compression
times may introduce latency in the pipeline.

In CPSs we have multiple data sources, like aforementioned in Chap­
ter II, the data pipeline should be able to ingest data from sensors, machines,
databases, external web services, etc. Regarding the nature of the problem, and
taking into account that most of these data come in either a semi-structured or
unstructured format (Assuncao et al., 2013, p. 8), a layer for filtering and cleaning
the data it is required (Agrawal et al., 2011, p. 7). This will be presented in the
next chapter, but it is worth to mention it here, thus, the workloads of the system
are not able to work with these type of data.

It is vital to understand this requirement because, in the end, the workloads
are the real job on the data that will give us valuable information. If we have wrong
data as an input we will get non useful information at the output of the system.

20

For example, one can think in a system that handle and process the information
of many health centers, the records and indications of the patients are written by
the health professional but they may contain errors. If our system is not able to
detect and clean these errors, it may indicate a wrong amount of a medicine to
be delivered to the patient (Agrawal et al., 2011, p. 8).

Thus, the whole architecture should be designed to be able to ingest all of
the sources and prepare the data for the workloads. Although, there are many
other considerations that should be taking into account for different types of work­
loads like, privacy of the data (Do we really need to identify users in the data
to perform the analysis? Are there any legal regulation that force us to remove
some PII?), security (What are the security requirements of the data we are pro­
cessing?), data pedigree (How trustworthy is the data? Do we know where this
data come from or how it was derived?), etc. The amount of considerations for
design this kind of architectures is enormous, thus, we can not cover all of these
considerations in the present work.

At this point, we have some useful data to work on it. The question now
is, what type of workloads are common in CPS systems? Are batch or streaming
workloads? and here we arrive to a complex point. There are many different type
of workloads out there. Zhen Jia et al have made a characterization of more than
15 workloads (Jia et al., 2014) whereas Gao Wanling et al. reviewed 40 workloads
to derive 8 dwarfs (Gao et al., 2015, p. 8) 1 to do a similar task and finally, Lei
Wang et al. have clustered 77 workloads using K-means into 17 representative
clusters (Wang, Zhan, Jia, & Han, 2015). This can give us an idea of the size of
the problem related to workloads definition.

Given the amount of research (Gao et al., 2015) (Wang, Zhan, et al., 2015)
(Jia et al., 2014) (Ferdman et al., 2012) (Chen et al., 2012) in the characterization
of workloads regarding the algorithms used, or application domains we will focus
only the identification of the types of workloads in CPS in regards to the type of
processing, batch or streaming.

In CPS is common to find both types of workloads, batch and streaming,
but also, there are workloads of both types at the same time. We can think for a
moment in our previous fraud detection example, in a very simple description, we
have an input (credit card approval) and the system will valídate this transaction
against a userprofile and decide if accept or decline it. We can consider this user
profile as the expected behavior of the user purchasing activities, for example,
if the user lives or has his card registered in a country A, and the transaction is
happening in a country B that is not registered as a travel destination in the user
profile, then the transaction will be declined.

Until this point the workload is only one of the streaming type. Another

1 Dwarfs are highly abstractions of frequently appearing operations

21

streaming analysis is to check the last ”n” transactions of the credit card and
verify whether these transactions happened in the same time window (a user can
not make purchases in different locations at the nearly same time with the same
card). This is called a ”windowing analysis” and it is a common workload for
stream processing (Marz & Warren, 2015).

Although, we now will refer to the generation of the user profile. This should
be something that knows the user purchasing behavior and thus it should evolve
as the this behavior change over time. To accomplish this, the systems are de-
signed to ingest and store every user transaction, and later a batch job using
machine learning algorithms updates the model (or as we referred early the user
profile) of each given user. In this way the system is capable to ”learn” the user
behaviors and further transactions approval or rejection will be more accurate.

Therefore, the original workload type is now ”split” in two parts, a stream­
ing near-real-time processing side, in charge of validate the transaction at ”card
swipe time” using a given profile and performing some windowing analysis, and
a second side, in which machine learning algorithms, or humans using different
tools can perform analysis in a batch processing way updating the user profile.

The ”fraud detection” example can be generalized as a ”system capable to
take a decision based on a known behavior of an actor”, in other words, having the
ability to differentiate normal and abnormal events. This is a complete area in data
analytics called anomaly detection or even more general outlier detection. This
type of analysis can be applied to different use cases than the fraud detection;
in the CPS, Industrie 4.0 and SmartFactory world, the technique can be used,
for example, in an early detection of failures in the machines of a production line
(E. A. Lee, 2008, p. 365) .

At this juncture, we have described the importance of data preparation and
cleaning, and the different types of workloads. It is also valid to note, that we are
introducing ”layers” in our architecture in a non formal way yet (that will be done
in the following chapter). The first layer is the ingestion of data, then the cleaning
of errors, and preparation of the data (including the mentioned privacy, veracity,
and security considerations not analyzed in this thesis) to be able to execute the
workloads, and finally the workload execution layer (Agrawal et al., 2011, p. 7).

This last execution layer is not well defined until here. In the aforemen-
tioned example, the query to the data happens at ”card swipe time”. This means
that in that exactly moment, when the user is in the cashier trying to pay, the
system execute the workload and validates the transaction. But what would hap­
pened if we did not have the batch side of the system? The whole workload would
have to be run to generate a user profile and then validate the transaction. This
implies reviewing the whole history of transactions, and some machine learning
algorithms, in the end it would take more than a couple of seconds. It could be 5

22

min or half an hour, either way it is not viable a system for this kind of workload to
take this much amount of time.

Consequently, the system perform a batch analysis and stores a profile for
fast access during purchase time. This is possible for the nature of the workload
(batch and streaming) and because the user is not likely to perform hundred of
purchases per hour. Nonetheless, we can think in a different scenario, in which
we have a batch workload but we still need fast responses at query time. Here,
two ”time frames” associated with layers are given. The first one, is the processing
of data at ingestion time, and in second place, we have the processing at query
time. We have now a new question, what we process (regarding the workload)
and when process it?

This is not a trivial question, thus the performance and response time of the
whole system is affected by the answer. In this new scenario, we can instruct the
system to execute some ”part” of the workload at the ingestion time, and the other
”part” at query time. Ergo, we can do some processing and pre-calculate part of
the queries in one time, and at query time, we can complete that processing
and show the results in a faster way. A deep understanding of the nature of the
workloads is critical to design a pipeline.

23

IV. ARCHITECTURE BUILDING BLOCKS

4.1 Introduction
As we stated earlier, we have defined the inputs and outputs of our data

pipeline; now we must define the architecture for ingest, process, and return the
results of the specified workloads. After reviewing the literature, we found many
different architectures that seems to be suitable for the described sources. In this
chapter we will describe the chosen architecture and each of its building blocks.

The high-level reference architecture is shown in Figure IV.1. This can be
seen as a process of steps or functions that get conducted on the data, from
preparing the data, analyzing it and presenting the results. In that, the process is
not different as traditional data pipelines and it is general enough to include most
of the reviewed architectures. I will specify for each building block its adaptability
to a native cloud solution.

The presented architecture is the big data analysis pipeline as proposed
by Agrawal et al. (Agrawal et al., 2011) in which the analysis of the data is split
into distinct phases of a sequential processing pipeline: Acquisition / Recording,
Extraction / Cleaning / Annotation, Integration / Aggregation / Representation,
Analysis / Modeling and Interpretation. We organize the functionality the system
needs to provide along the different steps of this pipeline. In other words, the
different functions are assigned to different phases of the analysis pipeline and
therefore to different phases of a ’big data’ analysis process.

Figure IV.1: Agrawal D. et. al. proposed data analysis pipeline.

24

4.2 Building Blocks

4.2.1 Acquisition and Recording

Acquisition and recording, also known as data ingestion layer, refer on
how the data arise from the source and is stored. There are several points to
consider for this phase. Firstly, as it was described in Chapter II, the variety of
sources in CPSs is very wide. A big portion of this data is of no interest, and it
can be filtered, also much of the data coming from the same sources may contain
similar information and can be compressed by orders of magnitude. One of the
big challenges in this phase is to define these filters in such a way that useful
information is not discarded.

Another important point is the ability to generate the right metadata to de­
scribe what data and how it is stored, and how is measured. There are metadata
acquisition systems that can help in storing metadata. Additionally, it is important
here to store information regarding the origins of the data for later data prove-
nance along through the pipeline.

In CPS we have two main parts as we described earlier. The IT source,
in which the data arise mostly from databases, files, or streaming. Usually these
data is structured or semi-structured, and filtering and compression are more eas-
ily done or even not required. In the other hand, we have the physical world, in
which automatic systems generate the data while are actively working (e.g. in
manufacturing industries, while actually manufacturing a product) and the acqui­
sition can vary among different options, local storage in the machine and further
manual dumps of the data, network capable machines or other type of buses, etc.

For a cloud native solution it is required that the sources allow data acqui­
sition from the cloud, this means that our CPSs should be capable to push (or
being pulled) by the ingestion layer of the pipeline in the cloud. Another key point
is the ”velocity” of the data. For cloud solutions, the bandwidth is critical, not only
for a performance but for a costing point of view.

Data ingestion in the cloud can be performed by instantiating computer
resources and choosing and configuring the appropriate tool, or leverage on some
cloud provider proprietary tools (some of them will be mentioned in the following
chapter). .

The storage of the master data set is another key point. As we mentioned
in Chapter II it is indispensable to have in hand a fault-tolerance storage. Again,
we can create our own compute resources and configure a storage system like for
example, Hadoop Distributed File System (HDFS) or leverage on cloud providers
solutions like Amazon S3. The way in which the data is stored will affect how it
can be consumed, so it is vital to design carefully the storage strategy (Marz &

25

Warren, 2015, p. 54).
Considerations for design a storage solution may include:

• Efficient appends of new data

• Ability to scale to tera- or petabytes of data

• Parallel access for processing

• Compression capabilities

• Immutability enforcement

• Fault-tolerance and data replication

Despite the storage layer is built to run functions on the entire data set,
many of the workloads may not require access to all data. For example, a daily
clickstream analysis will need only the logs for the given day. Thus, this layer
should allow data partitioning. It can be can be done in a simple way by sort-
ing your data into separate folders. Another example can be login information
storage. Each login contains the IP address, the user and a times-tamp; a valid
partitioning scheme is shown in Figure IV.2 (Marz & Warren, 2015, p. 61-62).

Figure IV.2: A vertical partitioning scheme for login data.

Lastly, there are multiple formats for data storage and they have different
strengths and weakness. Characteristics that are important and thus desirable
are:

• Compressibility

• Splittability

• Columnar format

26

4.2.2 Extraction, Cleaning and Annotation

The information ingested can be from one of structured, semi-structured
and unstructured data sources and with different data types as described in Chap­
ter II. Aforementioned we explained that different data type affects the processing
pipeline. For example, unstructured data requires an information extraction phase
to retrieve the information and expresses it a structured form, whereas structured
data is already in that format. Data extraction is still today a technical challenge.

Moreover, the truthfulness of the data can not be slighted. In many cases
the data is not telling us the truth. Thus, data extraction phase may also involve
some sort of data filtering. Data can be filtered either because it is not required in
the following phases of the pipeline, or it is not suitable for further analysis. This
filtering or cleaning can be done based on attribute, rule, or even using machine
learning models but a good understanding of error models is required (Agrawal
et al., 2011, p. 8).

Given the nature of CPS, data sources within the cyber world systems usu­
ally provide structured data so an ’information extraction’ phase may not be re­
quired, nevertheless, their counterpart is mostly semi-structured or unstructured
and information extraction, and filtering is a must. Some ingestion tools offers
also some kind of processing allowing to centralize ingestion, extraction, filtering
and storage in one tool. This simplification, from a cloud point of view, it may be
useful reducing the complexity of configuring and managing different set of tools.
Some examples will be shown in Chapter V.

4.2.3 Integration, Aggregation and Representation

In this phase of the pipeline some functions should happen. Integration im-
plies the harmonization of data from different sources and bring them to a com­
mon schema. This transformation allows that all data can be queried together.
This is required because the data in different sources are modeled differently.

Given this heterogeneity of data, it is not sufficient to only record the data
and keep it in some repository. Data aggregation and analysis are challenge
tasks. They involve something more than simply locating, and presenting the
data. This phase must prepare the data in a way that is ready for the workloads to
be executed. This requires not only that the data structure and semantics become
expressed in a way that computer can understand, but to understand which parts
of the workloads can be pre-processed beforehand the real execution occurs at
query time (Agrawal et al., 2011).

This can involve aggregation between different data sets, and different al-
ternatives on how the same information can be stored. Some storage designs
may have advantages over others for a given workload. Interaction between the

27

system architect and domain scientists can greatly improve the data storage de-
signs.

4.2.4 Modeling and Analysis

This phase is the one in charge of receiving the query from the user and
perform the corresponding workload to obtain insights from the data. Depending
on the application of the pipeline this layer may not be end-user facing but run
some given workloads and calculate intermediate views (pre processed results).

Advantages of this may include performance reasons that requires pre-
processing, like the example aforementioned of fraud detection. The behavioral
purchase profile of the users is pre-computed in batch mode and then used at
purchasing time to approve or reject the transaction.

There are also two cases for this, user facing analysis requires an inter-
face for end-users to define their own computations, whereas dashboards or pre-
defined reports have also a pre-defined set of queries to execute.

A key point here is the requirements of the workloads that will let us later
define the processing engine to be used. From the batch and streaming point
of view, understand the workloads will condition us to one or more options to
be used here. For example, a general purpose workload can benefit for using a
system like Apache Spark (Zaharia, 2016), whereas a real-time application needs
a streaming processing engine like Apache Storm.

Moreover, the data types and the portability of algorithms should be thought
here. As we mention early, algorithms portability is merely conceptual but from
a practical point of view is not the same. For example, it may make more sense
in the previous layer to transform the data to a different data type, pre-compute
some data, aggregated it, and process it here we some algorithm that may have
advantages than not transforming the data and using another algorithm (Aggar-
wal, 2015, p. 3) .

Furthermore, because of the interconnected nature of CPSs, a vast amount
of information from different elements in the network allows the pipeline to perform
cross-checks, or validate data, and find hidden links between them. To accom-
plish this, we need not only the cleaned, validated, and efficiently accessible data,
but a query interface capable to express all of the questions that the user want to
perform. For example, some years ago was not thinkable to perform SQL alike
queries on top of a Hadoop cluster, whereas today there are many different tools
to do it.

In CPSs we do not have a good level of control on the data types and
sources, neither in the quality of the data that we are receiving. Thus, under-
standing which questions we want to perform to the system is also key to decide

28

which type of cleaning, filtering, pre-processing and processing our data needs.
This affects directly how we should think about this building block. In our cloud
pipeline this layer has a particular importance because the temptation of increas-
ing the performance of the system by adding more resources to it can come with
absurdly increases on costs. While a smart design and proper definition of the
tasks in previous phases of the architecture can significantly reduce the costs and
also increase the performance.

4.2.5 Interpretation

Interpretation layer is sometimes not considered in the literature, but is a
key component of the pipeline. The ultimate goal of the whole architecture is
gain valuable insights from the data but if the user is not able to understand the
performed analysis the value of the pipeline is strictly limited. To achieve a good
interpretation of the analysis, supplementary information must be provided. This
information should let the user understand how the results were derived.

Due the complexity of the data pipeline, this is not an easy task to perform.
Wrong or missing metadata stored hardly increase the complexity of this. Fur-
thermore, the pipeline involves multiples steps in which several assumptions are
made. Hence, most of this information and assumptions should be exposed to
the user in certain way to let her examine it critically (Agrawal et al., 2011).

29

V. ARCHITECTURE ALLOCATION TO TOOLS AND SER­
VICES

5.1 Tools
Among the different layers that we have defined, we can find different tools

that fit one ore more layers of the pipeline. Recognizing the nature of our work­
loads and data sources and types will let us choose the tool best suited to ac-
complish each task.

In this chapter we try to present some of the available tools in the big data
processing and analysis and how those can fit one or more layers in the different
architecture layers. For this, we try to give at least two tools for each layer to have
a better overview of different possibilities that an architect have.

Because the same tool sometimes is useful for more than layer we decided
to explain each tool and in which layers make sense to use it. We first will give
the literal description found on their owns web sites, then we will explain their
usage or application in regards to the architecture layers and finally make some
considerations if needed.

5.1.1 Apache Flume

Description
Flume is a distributed, reliable, and available service for efficiently collect-

ing, aggregating, and moving large amounts of log data. It has a simple and
flexible architecture based on streaming data flows. It is robust and fault tolerant
with tunable reliability mechanisms and many failover and recovery mechanisms.
It uses a simple extensible data model that allows for online analytic application1.

Q Channel Q) X

Aoent S ---------Agent
HDFS

Figure V.1: Apache Flume architecture.

https://flume.apache.org

30

https://flume.apache.org

Usage
Apache Flume, is a well known tool in event-based data ingestion environ-

ment. Its simple architecture is show in Figure V.1 and it gives it the powerful
capabilities that it has. In its basic form, Flume is a queue service. It has sources
that are loose coupled to one or multiple channels. This sources are in charge
of receiving events from the applications originating them. While is true that the
source can be customized to get virtually any data source, practically Flume is
best suited for event-based sources. After the message is put on the channel it
will remain there until a sink take it out of it. It allows chaining of multiple agents
until delivery of the message to a final terminator.

Flume interceptors are small pre-defined processing units that allows us to
perform some operations like, time-stamp events, add custom headers, transform
data with regular expressions or even discard records.

For its features, Flume is very well suited to be used in the acquisition layer
as the variety of sources and sinks is very big, and even if the exactly source
or sink is not available one can build her custom module. Furthermore, Flume
interceptors are a great option to perform time-stamp and certain cleaning and
filtering tasks corresponding to the extraction layer.

Considerations
One consideration about Flume, is that despite it is capable to read from

many sources, it does not perform well for batch ingestion from RDBMSs.

5.1.2 Apache Sqoop

Description
Apache Sqoop(TM) is a tool designed for efficiently transferring bulk data

between Apache Hadoop and structured datastores such as relational databases2.

IMPORT

EXPORT

Usage

2https://sqoop.apache.org

Figure V.2: Apache Sqoop architecture.

31

https://sqoop.apache.org

In contrast with Apache Flume, Sqoop is widely used to move information
in batch (or bulk) process from RDBMSs to HDFS and vice versa. Sqoop lets you
import table no matter how long they are, in singles jobs or multiple DB sessions
and table data split among all of those. It also allows compression codecs to
be used to reduce bandwidth resource usage. In addition to HDFS, Sqoop can
import data to HBase and Hive. It also have useful features to write metadata in
a metadata repository like HCatalog.

5.1.3 Apache Kafka

Description
Apache Kafka is publish-subscribe messaging rethought as a distributed

commit log. A single Kafka broker can handle hundreds of megabytes of reads
and writes per second from thousands of clients. Kafka is designed to allow a
single cluster to serve as the central data backbone for a large organization. It
can be elastically and transparently expanded without downtime. Data streams
are partitioned and spread over a cluster of machines to allow data streams larger
than the capability of any single machine and to allow clusters of coordinated
consumers.

Messages are persisted on disk and replicated within the cluster to prevent
data loss. Each broker can handle terabytes of messages without performance
impact. Kafka has a modern cluster-centric design that offers strong durability
and fault-tolerance guarantees.

producer producer producer

kaíka
cluster

1t

consumer consumer consumer

Figure V.3: Apache Kafka architecture.

Usage
As its description says, Kafka is a high scalable and fault tolerant publish-

subscribe messaging system. It is used also in the data ingestion layer for its good
scalability and performance. For cloud implementations with multiple processing
layers, Apache Kafka can be used as a messaging bus between those layers.

32

5.1.4 Apache Storm

Description
Apache Storm is a free and open source distributed realtime computation

system. Storm makes it easy to reliably process unbounded streams of data,
doing for realtime processing what Hadoop did for batch processing3.

Figure V.4: Apache Storm architecture

Usage
Apache Storm has similar approach as Apache Flume in regards to its

sources and sinks that here are called spouts and bolts. The key difference, and
thus, why Storm is a stream processing application is that bolts are not merely
sinks, they not only deliver the message to further layers (or bolts) but they are a
streaming processing units. When a workload is streaming by nature with not
batch component Apache Storm fits as an ideal distributed streaming option.
When thinking in Apache Storm we can cover the processing layers of our archi­
tecture (extraction and cleaning, integration and aggregation, and analysis) and
in addition to Kafka, it covers too acquisition layer. Hence, for a pure streaming
type of workload Apache Storm is a good piece of technology to start with.

Considerations
Apache Storm is perfectly suited to be used with Apache Kafka as a mes-

saging bus and it is commonly seen in this way in the architectures founds in the
ecosystem.

5.1.5 Apache Hadoop

Description
The Apache Hadoop software library is a framework that allows for the dis-

tributed processing of large data sets across clusters of computers using simple
programming models. It is designed to scale up from single servers to thousands
of machines, each offering local computation and storage. Rather than rely on

3https://storm.apache.org

33

https://storm.apache.org

hardware to deliver high-availability, the library itself is designed to detect and
handle failures at the application layer, so delivering a highly-available service on
top of a cluster of computers, each of which may be prone to failures4.

The project includes these modules:

• Hadoop Common: The common utilities that support the other Hadoop
modules.

• Hadoop Distributed File System (HDFS): A distributed file system that
provides high-throughput access to application data.

• Hadoop YARN: A framework for job scheduling and cluster resource man-
agement.

• Hadoop MapReduce: A YARN-based system for parallel processing of
large data sets.

Figure V.5: Apache Hadoop architecture

Usage
Hadoop is by default the MapReduce framework mostly used. It was

intended for MapReduce but several other technologies have bring to Hadoop
graph, SQL, ”stream” processing as well. One of the key components in Hadoop
is the HDFS. It provides a highly scalable, fault-tolerant storage. Thus, other
usages, just only rely on HDFS and YARN to access to application data while
leveraging in processing frameworks other than MapReduce paradigm.

In contrast to Storm, and in combination with Apache Flume or Sqoop,
Hadoop is the MapReduce standard for batch processing workloads. It covers
the same layers as Storm but for a different workload type.

Considerations

4https://hadoop.apache.org

34

https://hadoop.apache.org

Apache Hadoop is a top level project hosted in the Apache Software Foun­
dation, but one can find different flavors of Hadoop by Private vendors like Cloud-
era, MapR, HortonNetworks, IBM, and Pivotal Software among others.

5.1.6 Apache Spark

Description
Apache Spark is a fast and general-purpose cluster computing system. It

provides high-level APIs in Java, Scala, Python and R, and an optimized engine
that supports general execution graphs. It also supports a rich set of higher-
level tools including Spark SQL for SQL and structured data processing, MLlib for
machine learning, GraphX for graph processing, and Spark Streaming5.

Apache Spark is one of the most growing computing system the last years.
It used for faster MapReduce like computations and with higher-level tools it can
be used also for machine learning, graph, and SQL processing. Furthermore,
Spark Streaming offers micro-batch streaming processing. The advantage of
this application is that it brings a complete option to cover all layers of the data
pipeline. From acquisition to even interpretation. Apache Spark has an interactive
shell in which a user can perform several computations and data provenance.

Considerations Apache Spark accelerates batch operations and performs
fairly well for near-real-time applications. Databricks was founded by Spark au-
thors and offers a free option to start trying Spark.

5https://spark.apache.org

g Scala é «“
Java python

Data Source

X&ttoziftnsim H B H S E @ {J S 0 N }M y5|¡S elasticsearch.
cassandra ^BIVE PostgreSQL

24

Figure V.6: Apache Spark architecture (Provided by Databricks)

Usage

35

https://spark.apache.org

Description
Flinks core is a streaming dataflow engine that provides data distribu-

tion, communication, and fault tolerance for distributed computations over data
streams.

Flink includes several APIs for creating applications that use the Flink en-
gine:

• DataStream API for unbounded streams embedded in Java and Scala, and

• DataSet API for static data embedded in Java, Scala, and Python,

• Table API with a SQL-like expression language embedded in Java and
Scala.

Flink also bundles libraries for domain-specific use cases:

• CEP, a complex event processing library,

• Machine Learning library, and

• Gelly, a graph processing API and library.

5.1.7 Apache Flink

Figure V.7: Apache Flink architecture

Usage
Apache Flink is a recent technology that integrate real-time processing

and batch processing under the same application. It can be used for both type of

36

workloads and used in combination to Apache Flume or Kafka it covers most of
the layers of the data pipeline.

5.1.8 Apache Hive

Description
The Apache Hive data warehouse software facilitates reading, writing, and

managing large datasets residing in distributed storage using SQL. Structure can
be projected onto data already in storage. A command line tool and JDBC driver
are provided to connect users to Hive.

Figure V.8: Apache Hive architecture

Usage
For the interpretation layer, Apache Hive gives us a SQL way to access in-

formation on Hadoop clusters. It has a powerful processing driver to transforming
the SQL queries in MapReduce jobs to fulfill it and present the results. It can be
used for end users to gain insights about the information stored.

Considerations
Actually Apache Hive offers a SQL like language called HiveQL and some

limitations are founded.

5.1.9 Apache Imapala

Description
Apache Impala (incubating) is the open source, native analytic database

for Apache Hadoop.

37

Impala raises the bar for SQL query performance on Apache Hadoop while
retaining a familiar user experience. With Impala, you can query data, whether
stored in HDFS or Apache HBase including SELECT, JOIN, and aggregate func-
tions in real time. Furthermore, Impala uses the same metadata, SQL syntax
(Hive SQL), ODBC driver, and user interface (Hue Beeswax) as Apache Hive,
providing a familiar and unified platform for batch-oriented or real-time queries.

Figure V.9: Apache Impala architecture

Usage
Apache Impala can be considered as the evolution of Hive. It offers better

support and more powerfull queries system. Also, batch-oriented and real-time
queries can performed. It is used for data analysis layer as well as for the inter­
pretaron layer.

Considerations
Impala still is an incubating project on the Apache Software Foundation.

This does not mean that the software is unstable or not usable but that the man-
agement and involvement in the project is still being tracked, and if a community
enough grows with it, it can be moved to a top level project.

5.1.10 Apache Pig

Description
Apache Pig is a platform for analyzing large data sets that consists of a

high-level language for expressing data analysis programs, coupled with infras-
tructure for evaluating these programs. The salient property of Pig programs is

38

that their structure is amenable to substantial parallelization, which in turns en-
ables them to handle very large data sets.

At the present time, Pig’s infrastructure layer consists of a compiler that
produces sequences of Map-Reduce programs, for which large-scale parallel im-
plementations already exist (e.g., the Hadoop subproject). Pig’s language layer
currently consists of a textual language called Pig Latin, which has the following
key properties:

• Ease of programming. It is trivial to achieve parallel execution of simple,
”embarrassingly parallel” data analysis tasks. Complex tasks comprised of
multiple interrelated data transformations are explicitly encoded as data flow
sequences, making them easy to write, understand, and maintain.

• Optimization opportunities. The way in which tasks are encoded permits
the system to optimize their execution automatically, allowing the user to
focus on semantics rather than efficiency.

• Extensibility. Users can create their own functions to do special purpose
processing.

Usage
Lastly, Pig is used for analysis layer like Impala and Hive, but also for its

powerful language Pig Latin it is also used in the processing layer.

5.2 Cloud Providers and Services
In the previous section we presented several tools to design and build our

data pipeline. In this section, we will present different cloud providers, in which the
pipeline can be built using their services and the tools aforementioned. Moreover,
we will present too, some of the Software-as-a-Service (SaaS) offered by this
providers to cover the requirements for our architecture. Due to the amount of
existing technologies and the complexity for estimate the hardware, software, and
human resources, a cost analysis is out of the scope in this thesis. However, we
highly recommend that at the time of the data pipeline design, the architect should
take into account not only the performance requirements to process the required
workloads but also a cost analysis of the tools and/or SaaS chosen.

It is required to understand the difference between the different cloud ser­
vice model. The NIST defines three types of service models, Infrastructure-as-a-
Service (IaaS),
Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS). The difference
between those are (Mell & Grance, 2011):

39

Figure V.10: Apache Pig architecture

• laaS: this is service model consist in provide to the user the capabilities of
processing, storage, networks, and others basic computing resources, so
the user is able to run arbitrary software.

• PaaS: in this service model the provider manages the underlying infras-
tructure and provides the user the ability to deploy applications built using
programming languages, libraries, and services supported by the provider.

• SaaS: this service model provides the user the capability to use applications
running on the cloud infrastructure. However, the provider is the one who
manages the underlying infrastructure and application deployment. The
user is limited to modify some specific application configuration settings.

Given the vast amount of different cloud providers in different service mod-
els, we decided to use Amazon Web Services (AWS) as a IaaS/PaaS cloud
provider due it is the lead provider in the market. For SaaS we will consider
some AWS services too and other big data SaaS providers as well.

40

For implementing the data pipeline, the architect can design it using ser­
vices and tools from different service models and even different providers. Thus,
a proper cost analysis is required.

5.2.1 AWS S3

Description
Amazon Simple Storage Service (Amazon S3), provides developers and

IT teams with secure, durable, highly-scalable cloud storage. Amazon S3 is easy
to use object storage, with a simple web service interface to store and retrieve
any amount of data from anywhere on the web.

Usage
Amazon S3 offers an alternative for data storage layer cloud native. It is

the most robust and reliable product of Amazon and brings several properties as
fault-tolerance, encryption, replication, compression and high scalability making
it an attractive choice for a managed data storage layer.

5.2.2 AWS Kinesis Family

Description
Amazon Kinesis is a platform for streaming data on AWS, offering power-

ful services to make it easy to load and analyze streaming data, and also pro-
viding the ability for you to build custom streaming data applications for special-
ized needs. Web applications, mobile devices, wearables, industrial sensors, and
many software applications and services can generate staggering amounts of
streaming data sometimes TBs per hour that need to be collected, stored, and
processed continuously.

Usage
Kinesis family offers actually three products, Firehose, Streams and Ana­

lytics.
Streams offers similar capabilities as Flume but without the power of Flume

interceptors.
Firehose can be thought as the equivalent of Kafka, is a very high scalable

data ingestion system.
Finally, this year, Analytics become general available and offers real-time

processing through SQL like defined applications. Used in conjunction with Fire­
hose, the solution can offer similar capabilities as Apache Storm with Kafka.

5.2.3 AWS Lambda

Description

41

AWS Lambda is a serverless compute service that runs your code in re-
sponse to events and automatically manages the underlying compute resources
for you. You can use AWS Lambda to extend other AWS services with custom
logic, or create your own back-end services that operate at AWS scale, perfor­
mance, and security. AWS Lambda can automatically run code in response to
multiple events, such as modifications to objects in Amazon S3 buckets or table
updates in Amazon DynamoDB.

Usage
Lambda functions are a pay-as-you-go processing units. We can compare

the to Flume interceptors or Storm bolts. They can be interpolated in the pipeline
to perform different activities, from data extraction and cleaning, to actually per-
form aggregation or run the whole workload.

5.2.4 AWS Elastic MapReduce

Description
Amazon EMR is a web service that makes it easy to quickly and cost-

effectively process vast amounts of data.
Amazon EMR simplifies big data processing, providing a managed Hadoop

framework that makes it easy, fast, and cost-effective for you to distribute and
process vast amounts of your data across dynamically scalable Amazon EC2 in-
stances. You can also run other popular distributed frameworks such as Apache
Spark and Presto in Amazon EMR, and interact with data in other AWS data
stores such as Amazon S3 and Amazon DynamoDB.

Usage
As the name may indicate this is a Hadoop alike managed service. It offers

also Spark processing on top of it and its used for the same layers as Apache
Hadoop and Spark.

Considerations
Like this services are several clouds providers that offers similar sevices.

Cloduera is another well known Hadoop provider. We mentioned before Databricks
for Spark as SaaS solution. Lastly HortonWorks is a big player in offering Hadoop
in the SaaS fashion also providing streaming processing capabilities.

5.2.5 AWS Quicksight

Description
Amazon QuickSight is a very fast, cloud-powered business intelligence (BI)

service that makes it easy for all employees to build visualizations, perform ad-
hoc analysis, and quickly get business insights from their data. Amazon Quick-
Sight uses a new, Super-fast, Parallel, In-memory Calculation Engine (SPICE) to

42

perform advanced calculations and render visualizations rapidly. Amazon Quick-
Sight integrates automatically with AWS data services, enables organizations to
scale to hundreds of thousands of users, and delivers fast and responsive query
performance to them via SPICEs query engine.

Usage
Quicksight is another recently launched product from AWS and it offers

visualization capabilities to cover the interpretation layer of the pipeline.
Considerations
Quicksight is a relatively new product and not mature enough. For a more

mature solution, Tableau offers business intelligence in the cloud with a powerfull
and rich set of features.

5.2.6 DataTorrent

Description
DataTorrent RTS Core is an open source enterprise-grade unified stream

and batch processing engine. It is a high performing, fault tolerant, scalable,
Hadoop-native in-memory platform. The engine provides a complete set of sys­
tem services freeing the developer to focus on business logic. The platform is
capable of processing billions of events per second and recovering from node
outages with no data loss and no human intervention.

Usage
This provider, offers a stream and batch processing, covering mostly pro­

cessing and analysis layers, based on an Apache Apex.
Considerations
We found that Apache Apex has not growth as fast as Apache Spark for ex­

ample, and newer technologies like Apache Flink are taking over it. DataArtisans
for example offers an Apache Flink as SaaS.

As we can see the this is just a small overview of some of the tools and
services presented in the ecosystem. It is hardly to give a recommendation to
use one or another tool or service and this decision will come by the hand of the
data types used, the workloads to be processed, and a proper cost analysis.

43

VI. SUMMARY AND OUTLOOK

6.1 Conclusions
Industrie 4.0, SmartFactories, Internet of Things are not only buzz words

nowadays but they have a strong impact on scholars. Academia has been study-
ing CPS for some time now and after a initial literature review we could not find a
cloud native data pipeline for them.

There were general big data architectures thought from a technical point
of view with focus on performance. There were also studies to bring this kind of
pipelines to small- and medium-sized enterprises. And there were also ad-hoc
data processing in the cloud reports but most of those leave a gap that we tried
to fill with the present work.

We are in the middle of the 4th industrial revolution. In a world of internet
of things our work finds its context and its cloud native approach. We the advent
of every day more promising tools in a SaaS fashion, cloud providers provide
system architects and data scientist to interact with the data in a relative efficient
and cost-effective way.

The big data world out there is immeasurable. The growth on data has
been increasing at a pace that no current architecture is capable to process.
Scholars are exhorted to find ways to improve and bring solutions to the open
challenges. With this work we tried to contribute presenting a high level architec­
ture and some recommendations for a practical implementation of it.

The idea behind a high-level architecture was make it general enough to be
adapted to different scenarios. The CPS world is arising and new challenges ap-
pear frequently, having a flexible architecture let designers adapt to this changes.

We also described different characteristics of workloads. In CPSs, exists
a vast amount of different workloads, we tried to present them in general way
but giving key concepts to understand what are the required points to take into
account when designing the data pipeline.

Velocity, volume, variety and veracity are key concepts in big data. Most of
them have their first encounter to our data pipeline in the ingestion or acquisition
layer. Given the importance of properly acquire and record the data, as it is the
fundamental piece of the pipeline, we gave an explanation of different data types
and sources and its implications for a proper ingestion.

At the end, we wanted to give a more real view of the architecture and
presented an overview of most common tools used in the ecosystem. We pre­
sented first software applications designed to deal with these issues, and then,

44

due the nature of our pipeline, we presented some cloud providers and their SaaS
solutions to cover some phases of our architecture.

6.2 Limitations
From a technological point of view this work presented several limitations

due the wide nature of the topic and our objective to give a high level architecture
that came with a trade off of depth in each subtopic.

First, referring to the data types chapter, a brief explanation about different
data types was given. A more in depth explanation and its implications in the
pipeline and in algorithm selection could have been more interesting.

Another limitation was the superficial explanation on data properties. In
a data pipeline is not surprisingly that ”data” is the key part. Understand all of
its characteristics is key to a correct design of the architecture. We opted to ex-
plain the minimum of those characteristics that enable us to design a meaningful
pipeline. However, properties like privacy, security, governance were just men-
tioned.

In regards to data storage a basic knowledge was described. Neverthe-
less, in big data environment and with the exponential growth of data volumes,
a proper understanding of data storage properties, capabilities and designs will
help design efficiently a data storage layer to support the pipeline, not only from
the performance point of view but also from the storage costs.

Finally, an experimental setup with a concrete implementation of the ar­
chitecture would have been very interesting. During the work, many recommen-
dations were given but a practical example with real numbers could have helped
to clarify them. With the amount of tools and services presented, an allocation
of those to the architecture and a measure of some parameters given a certain
workload could have let us understand the impact of workload relate decision
regarding performance and costs.

6.3 Outlook
The limitations presented can be used as a base to give some baselines on

the continuity of this work. Filtering is a broad topic and its still today a challenge
to design effective filtering layer. A deep knowledge on data types is required and
extending this work in that topic may be useful to add more knowledge into the
field.

Naturally, given to this work a practical context will make even more im-
portant data properties understanding like privacy, security and governance. Just

45

thinking on workloads that analyzes critical personal identifiable information, or
data pipelines that are shared among different users, expose the lack of deep-
ness of this work in those areas and the need of extending it.

Lastly, we found several workload characterization works but all of them
were performance centric approach. A more deep business analysis of the impli-
cations of handle a data pipeline and the return of investment will help to mea­
sure the value that can be gain from it. Pay-as-you-go modality gives small- and
medium-enterprises the option to be part of this industrial revolution with costs
that they can afford.

46

LIST OF FIGURES

II.1 SAP ERP solution map (SAP 2012e)...15

IV.1 Agrawal D. et. al. proposed data analysis pipeline...........................24
IV.2 A vertical partitioning scheme for login data..26

V.1 Apache Flume architecture...30
V.2 Apache Sqoop architecture...31
V.3 Apache Kafka architecture..32
V.4 Apache Storm architecture ..33
V.5 Apache Hadoop a rch itectu re34
V.6 Apache Spark architecture (Provided by Databricks).........................35
V.7 Apache Flink architecture...36
V.8 Apache Hive arch itectu re ...37
V.9 Apache Impala architecture..38
V.10 Apache Pig architecture..40

47

LIST OF TABLES

I.1 Multidimensional data s e t ... 10

48

REFERENCES
Agarwal, R. C., Aggarwal, C. C., & Prasad, V. V. V. (2001). Atree projection algo-

rithm for generation of frequent item sets. Journal of parallel and Distributed
Computing, 61(3), 350-371.

Aggarwal, C. C. (2007). Data streams: models and algorithms (Vol. 31). Springer
Science & Business Media.

Aggarwal, C. C. (2015). Data mining: The textbook. Springer.
Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering

evolving data streams. In Proceedings ofthe 29th International conference
on very large data bases-volume 29 (p. 81-92).

Aggarwal, C. C., Wolf, J. L., Yu, P. S., Procopiuc, C., & Park, J. S. (1999). Fast
algorithms for projected clustering. In Acm sigmod record (Vol. 28, p. 61­
72).

Agrawal, D., Bernstein, P, Bertino, E., Davidson, S., Dayal, U., Franklin, M., ...
Han, J. (2011). Challenges and opportunities with big data.

Alrehamy, H., & Walker, C. (2015). Personal data lake with data gravity pull. In Big
data and cloud computing (bdcloud), 2015 ieee fifth international conference
on (p. 160-167).

Anderson, C. (2015). Creating a data-driven organization. O’Reilly Media, Inc.
Ansoff, H. I. (1975). Managing strategic surprise by response to weak signals.

California management review, 18(2), 21-33.
Apache. (2016). Apache hadoop. Retrieved from https://hadoop.apache.org
Arvind, A. (2016). Architecture for industry 4.0-based manufacturing systems

(Unpublished doctoral dissertation). Carnegie Mellon University Pittsburgh,
PA.

Assuncao, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A., & Buyya, R. (2013).
Big data computing and clouds: challenges, solutions, and future directions.
arXiv preprint arXiv:1312.4722.

Assuncao, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A., & Buyya, R. (2015).
Big data computing and clouds: Trends and future directions. Journal of
Parallel and Distributed Computing, 79, 3-15.

Atkeson, A., & Kehoe, P. J. (2001). The transition to a new economy after the
second industrial revolution (Tech. Rep.). National Bureau of Economic Re­
search.

Bahrami, M., & Singhal, M. (2015). The role of cloud computing architecture in
big data. In Information granularity big data, and computational intelligence
(p. 275-295). Springer.

49

https://hadoop.apache.org

Bauernhansl, I. T. (2014). Die vierte industrielle revolution-der weg in ein
wertschaffendes produktionsparadigma. In Industrie 4.0 in produktion, au-
tomatisierung und logistik (p. 5-35). Springer.

Begoli, E. (2012). A short survey on the state of the art in architectures and
platforms for large scale data analysis and knowledge discovery from data.
In Proceedings ofthe wicsa/ecsa 2012 companion volume (p. 177-183).

Berners-Lee, T. (1991,8).
Bloem, J., van Doorn, M., Duivestein, S., Excoffier, D., Maas, R., & van Ommeren,

E. (2014). The fourth industrial revolution. Things to Tighten the.
Bryson, S., Kenwright, D., Cox, M., Ellsworth, D., & Haimes, R. (1999). Visually

exploring gigabyte data sets in real time. Communications of the ACM,
42(8), 82-90.

Calzarossa, M., Haring, G., Kotsis, G., Merlo, A., & Tessera, D. (1995). A hi-
erarchical approach to workload characterization for parallel systems. In
International conference on high-performance computing and networking
(p. 102-109).

Calzarossa, M., Massari, L., & Tessera, D. (2000). Workload characterization is-
sues and methodologies. In Performance evaluation: Origins and directions
(p. 459-482). Springer.

Chang, W. L. (15, 10). Nist big data interoperability framework: Volume 7, stan-
dards roadmap (Tech. Rep.). National Institute of Standards and Technol­
ogy. Retrieved from http://dx.doi.org/10.6028/NIST.SP .1500-7

Chen, Y., Alspaugh, S., & Katz, R. (2012). Interactive analytical processing in big
data systems: A cross-industry study of mapreduce workloads. Proceed­
ings of the VLDB Endowment, 5(12), 1802-1813.

Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Xing,
Y., & Zdonik, S. B. (2003). Scalable distributed stream processing. In Cidr
(Vol. 3, p. 257-268).

Davenport, T. (2014). Big data at work: dispelling the myths, uncovering the
opportunities. Harvard Business Review Press.

Davenport, T. H. (2013). Analytics 3.0. Harvard Business Review, 91(12), 64-+.
Davenport, T. H., Barth, P, & Bean, R. (2012). How big data is different. MIT

Sloan Management Review, 54(1), 43.
Denning, P. J. (1990). The science of computing: Saving all the bits. American

Scientist, 78(5), 402-405.
Ding, S., Wu, F., Qian, J., Jia, H., & Jin, F. (2015). Research on data stream

clustering algorithms. Artificial Intelligence Review, 43(4), 593-600.
Doherty, C., Orenstein, G., Camina, S., & White, K. (2015). Building real-time

data pipelines (First ed.). United States: O’Reilly.
Dos Santos, J., & Singer, J. (2012). Looking for the right answers in the clouds.

50

http://dx.doi.org/10.6028/NIST.SP

Armed Forces Communications and Electronics Association, September.
Enke, D., & Thawornwong, S. (2005, 11). The use of data mining and neural

networks for forecasting stock market returns. Expert Systems with Appli­
cations, 29(4), 927-940. doi: 10.1016/j.eswa.2005.06.024

European document retention guide. (2014).
Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D., ...

Falsafi, B. (2012). Clearing the clouds: a study of emerging scale-out
workloads on modern hardware. In Acm sigplan notices (Vol. 47, p. 37-48).

Gandomi, A., & Haider, M. (2015, 4). Beyond the hype: Big data concepts,
methods, and analytics. International Journal of Information Management,
35(2), 137-144. doi: 10.1016/j.ijinfomgt.2014.10.007

Gantz, J., & Reinsel, D. (2012). The digital universe in 2020: Big data, bigger
digital shadows, and biggest growth in the far east. IDC iView: IDC Analyze
the future, 2007, 1-16.

Gantz, J. F., & Reinsel, D. (2007). The expanding digital universe: A forecast of
worldwide information growth through 2010..

Gao, W., Luo, C., Zhan, J., Ye, H., He, X., Wang, L. , ... Tian, X. (2015). Identifying
dwarfs workloads in big data analytics. arXivpreprint arXiv:1505.06872.

Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., & Jacobsen, H.-
A. . A. (2013). Bigbench: towards an industry standard benchmark for
big data analytics. In Proceedings of the 2013 acm sigmod international
conference on management ofdata (p. 1197-1208).

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
... Pirahesh, H. (1997). Data cube: A relational aggregation operator gen-
eralizing group-by, cross-tab, and sub-totals. Data mining and knowledge
discovery, 1(1), 29-53.

Gregg, B. (2013). Systems performance: Enterprise and the cloud. Pearson
Education.

Grover, M., Malaska, T., Seidman, J., & Shapira, G. (2015). Hadoop application
architectures. O’Reilly Media, Inc.

Gunthner, I. W., & Klenk, E. (2014). Adaptive logistiksysteme als wegbereiter
der industrie 4.0. In Industrie 4.0 in produktion, automatisierung und logistik
(p. 297-323). Springer.

Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques.
Elsevier.

Han, R., Jia, Z., Gao, W., Tian, X., & Wang, L. (2015). Benchmarking
big data systems: State-of-the-art and future directions. arXiv preprint
arXiv:1506.01494.

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U.
(2015). The rise of big data on cloud computing: Review and open research

51

issues. Information Systems, 47 , 98-115.
Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for industrie 4.0

scenarios. In 2016 49th hawaii international conference on system sciences
(hicss) (p. 3928-3937).

Holmes, A. (2012). Hadoop in practice (2nd ed.). Manning Publications Co.
Hoste, K., & Eeckhout, L. (2007). Microarchitecture-independent workload char­

acterization. IEEE Micro, 27 (3), 63-72.
Inmon, W. H., & Linstedt, D. (2014). Data architecture: A primer for the data

scientist: Big data, data warehouse and data vault. Morgan Kaufmann.
Jacobs, A. (2009). The pathologies of big data. Communications of the ACM,

52(8), 36-44.
Ji, C., Li, Y., Qiu, W., Awada, U., & Li, K. (2012). Big data processing in cloud

computing environments. In 2012 12th international symposium on perva-
sive systems, algorithms and networks (p. 17-23).

Jia, Z., Zhan, J., Wang, L., Han, R., McKee, S. A., Yang, Q., ... Li, J. (2014).
Characterizing and subsetting big data workloads. In Workload characteri­
zation (iiswc), 2014 ieee international symposium on (p. 191-201).

Kambatla, K., Pathak, A., & Pucha, H. (2009). Towards optimizing hadoop provi-
sioning in the cloud. HotCloud, 9, 12.

Katal, A., Wazid, M., & Goudar, R. H. (2013). Big data: issues, challenges, tools
and good practices. In Contemporary computing (ic3), 2013 sixth interna­
tional conference on (p. 404-409).

Kleppmann, M. (2015). Designing data-intensive applications. O?’Reilly Media,
to appear in.

Kleppmann, M. (2016). Making sense of stream processing. United States:
O’Really.

Kreps, J. (2014). I heart logs: Event data, stream processing, and data integra-
tion. O’Reilly Media, Inc.

Kumar, V., Andrade, H., Gedik, B., & Wu, K.-L. . L. (2010, 1). Deduce: at the
intersection of mapreduce and stream processing. ResearchGate, 657-662.
doi: 10.1145/1739041.1739120

Kurbel, K., Nowak, D., Jatzold, F., & Glushko, P (2015). An in-memory approach
to sentiment analysis based on sap hana. International Journal of Digital
Information and Wireless Communications (IJDIWC), 5(1), 1-13.

Kurbel, K. E. (2013). Enterprise resource planning and supply chain manage-
ment. Springer.

Laney, D. (2001). 3d data management: Controlling data volume, velocity and
variety. META Group Research Note, 6, 70.

Lee, E. A. (2008). Cyber physical systems: Design challenges. In 2008 11th
ieee international symposium on object and component-oriented real-time

52

distributed computing (isorc) (p. 363-369).
Lee, J., Bagheri, B., & Kao, H.-A. . A. (2015). A cyber-physical systems architec­

ture for industry 4.0-based manufacturing systems. Manufacturing Letters,
3 , 18-23.

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., & Leaf, D. (2011).
Nist cloud computing reference architecture. NIST special publication,
500(2011), 292.

Liu, Y. D., & Smith, S. (2008). Pedigree types. In International workshop on alias-
ing, confinement and ownership in object-oriented programming (iwaco).

Logothetis, D., & Yocum, K. (2008). Ad-hoc data processing in the cloud. Pro-
ceedings of the VLDB Endowment, 1(2), 1472-1475.

Lukoianova, T., & Rubin, V. L. (2014). Veracity roadmap: Is big data objective,
truthful and credible? Advances in Classification Research Online, 24(1),
4-15.

Lynch, C. (2008, 9). Big data: How do your data grow? Nature, 455(7209),
28-29. doi: 10.1038/455028a

MacDougall, W. (2014). Industrie 4.0: Smart manufacturing for the future. Ger-
many Trade & Invest.

Maier, M., Serebrenik, A., & Vanderfeesten, I. T. P (2013). Towards a big data
reference architecture. EINDHOVEN UNIVERSITYMS thesis.

Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., & Ghalsasi, A. (2011). Cloud
computingthe business perspective. Decision support systems, 51(1), 176­
189.

Marz, N., & Warren, J. (2015). Big data: Principles and bestpractices ofscalable
realtime data systems. Manning Publications Co.

Mattern, M., & Croft, R. (2014). Business cases mitsap hana: AnwendungsfUlle
und geschUftsmodelle fur big data (2014th ed.). Galileo Press GmbH.

McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012).
Big data. The management revolution. Harvard Bus Rev, 90(10), 61-67.

Mell, P, & Grance, T. (2011). The nist definition of cloud computing.
Nedyalkov, L. (2013). Designing a big data software-as-a-service platform

adapted for small and medium-sized enterprises (Unpublished doctoral dis-
sertation). TU Delft, Delft University of Technology.

Ramaswamy, L., Lawson, V., & Gogineni, S. V. (2013). Towards a quality-centric
big data architecture for federated sensor services. In 2013 ieee interna-
tional congress on big data (p. 86-93).

Schwab, K. (2016). The fourth industrial revolution..
Smirni, E., & Reed, D. A. (1997). Workload characterization of input/output in­

tensive parallel applications. In International conference on modelling tech-
niques and tools for computer performance evaluation (p. 169-180).

53

Smith, B. L. (2001). The third industrial revolution: policymaking for the internet.
Colum. Sci. & Tech. L. Rev., 3 , 1.

Spath, D., Gerlach, S., Hammerle, M., Schlund, S., & Strolin, T. (2013). Cyber-
physical system for self-organised and flexible labour utilisation. Personnel,
50, 22.

Thramboulidis, K. (2015). A cyber-physical system-based approach for industrial
automation systems. Computers in Industry, 72, 92-102.

Wang, L., Torngren, M., & Onori, M. (2015). Current status and advancement
of cyber-physical systems in manufacturing. Journal of Manufacturing Sys­
tems, 37(Part 2), 517-527.

Wang, L., Zhan, J., Jia, Z., & Han, R. (2015). Characterization and architectural
implications of big data workloads. arXivpreprint arXiv:1506.07943.

White, T. (2012). Hadoop: The definitive guide. O’Reilly Media, Inc.
Yin, S., & Kaynak, O. (2015). Big data for modern industry: Challenges and

trends [point of view]. Proceedings ofthe IEEE, 103(2), 143-146.
Zaharia, M. (2016). An architecture for fast and general data processing on large

clusters (Tech. Rep.).

54

