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Abstract: Multiple Osteochondromatosis (MO, MIM 133700 & 133701), an autosomal dominant
O-glycosylation disorder (EXT1/EXT2-CDG), can be associated with a reduction in skeletal growth,
bony deformity, restricted joint motion, shortened stature and pathogenic variants in two tumor
suppressor genes, EXT1 and EXT2. In this work, we report a cross-sectional study including 35 index
patients and 20 affected family members. Clinical phenotyping of all 55 affected cases was obtained,
but genetic studies were performed only in 35 indexes. Of these, a total of 40% (n = 14) had a family
history of MO. Clinical severity scores were class I in 34% (n:18), class II in 24.5% (n:13) and class III
in 41.5% (n:22). Pathogenic variants were identified in 83% (29/35) probands. We detected 18 (62%)
in EXT1 and 11 (38%) in EXT2. Patients with EXT1 variants showed a height z-score of 1.03 SD lower
than those with EXT2 variants and greater clinical severity (II–III vs. I). Interestingly, three patients
showed intellectual impairment, two patients showed a dual diagnosis, one Turner Syndrome and
one hypochondroplasia. This study improves knowledge of MO, reporting new pathogenic variants
and forwarding the worldwide collaboration necessary to promote the inclusion of patients into
future biologically based therapeutics.

Keywords: osteochondroma; O-glycosylation disorders; multiple osteochondromatosis; multiple
exostosis; EXT1/EXT2-CDG

1. Introduction

Congenital disorders of glycosylation (CDG) are a rapidly growing family of inherited
metabolic defects comprising of >150 genetic diseases due to alterations in the N- or
O-glycosylation pathway [1].

Multiple Osteochondromatosis (MO; MIM 133700, 133701), also known as EXT1/EXT2-
CDG [2], is an autosomal dominant disease and the most frequent Congenital Disorder
of O-Glycosylation (CDG) (1:20,000) [3]. Osteochondroma generally occurs as a single
lesion, and most do not have a genetic component. When two or more osteochondromas
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are present, they are more likely to have a genetic cause [4–7]. Two tumor suppressor genes
have been identified: EXT1 (8q24.11-q24.13) and EXT2 (11p12-p11), which encode two gly-
cosyltransferases involved in the synthesis of heparan sulfate proteoglycans (HSPGs) [8–15].
The altered O-glycosylation of the heparan sulfate proteoglycans disturb binding of specific
growth factors in chondrocytes, resulting in abnormal signaling and altered endochondral
ossification leading to osteochondromas [16,17].

MO mainly affects the metaphysis of long bones or the surface of flat bones leading to bone
tissue deformities. Osteochondromas can be associated with a reduction in skeletal growth, bony
deformity, restricted joint motion, shortened stature, premature osteoarthritis and compression
of peripheral nerves. The malignant transformation of osteochondroma to secondary peripheral
chondrosarcoma has been reported in 0.5–5% of cases. Pain, acute ischemia and signs of phlebitis
or nerve compression are associated with the most severe forms [5,6,18].

Heterozygous single nucleotide variants, deletions, or duplications resulting in frameshifts
or loss of EXT1 and EXT2 expression are identified in approximately 80% of patients with MO.
Structural alterations involving single or multiple exons of EXT1 or EXT2 have been found in
an additional 10% of cases [5,6,19–24]. To date, more than 875 EXT1 and 450 EXT2 different
pathogenic variants have been found worldwide (https://databases.lovd.nl/shared/genes/
EXT2/EXT1, accessed on 1 August 2022) [25].

In the present study, we report the clinical studies and phenotypic data, together with
the genetic variants, identified in a cohort of Argentine patients with MO, from a single center.

2. Cohort of Patients and Methods

This was an observational, cross-sectional study of a cohort of patients with clinical
and radiological diagnosis of MO seen for the first time and/or during follow-up at the
skeletal dysplasia clinic of Garrahan Hospital, Buenos Aires, Argentina. All patients older
than two years of age and affected parents registered in the database were considered
eligible. Those patients who could not be located, who did not attend the consultation
and/or who did not agree to participate in the study were excluded. For the clinical
analysis, three cases that presented additional genetic conditions were eliminated: Turner
syndrome (n:1), Larsen syndrome (n:1) and Hypochondroplasia (n:1). Informed consent
for participation in the study was obtained from the probands or parents. The study was
approved by the Ethics Committee (CIEIS, Act No. 95/2007/2016).

2.1. Clinical Studies and Phenotypic Data

Clinical phenotyping from all 55 patients (35 indexes and 20 family affected members)
was obtained. Each patient was evaluated by a multidisciplinary team and a complete phys-
ical examination was performed, including height measurement, pubertal development
according to Tanner [26], and a pain survey. Height was measured following the recom-
mendations of the Argentine Society of Pediatrics [26]. Gender, age at time of consultation,
affected relatives, schooling and place of residence were also recorded. Radiographs of the
entire skeleton were assessed. The adults considered were those patients with bone age
and adult pubertal development. Other variables obtained by reviewing the clinical history,
and validated by questioning, were the age of first symptom, number of previous surgeries
and extra-skeletal complications, such as pneumothorax, hemothorax, compression of
peripheral nerves, paresis, and malignancy of the injuries.

Clinical severity was defined following the classification of Pedrini et al. [27] with three
groups based on the presence of deformities (shortening of long bones, curvature, scoliosis,
varus or valgus of the knee, ankle deformity) and functional limitations. Group I: without
deformities or functional limitations (A ≤ 5 sites with exostoses; B > 5 sites with exostoses);
Group II: deformities without functional limitations (A ≤ 5 sites with deformity; B > 5
sites with deformity); and Group III: deformities and functional limitations (A functional
limitation in one place; B in more than one site).To avoid an excessive dispersion of data in
the statistical analysis, we elected not to consider the clinical subclassification (A and B) in
each group.

https://databases.lovd.nl/shared/genes/EXT2/EXT1
https://databases.lovd.nl/shared/genes/EXT2/EXT1
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2.2. Genetic Screening

Genomic DNA was obtained from peripheral blood leukocytes from all 35 index
individuals using the Wizard Genomic DNA purification Kit (Promega, Madison, WI,
USA), according to the manufacturer’s instructions. Genetic screening of the 11 EXT1
(NM_000127.3) and 13 EXT2 (NM_000401.3) coding exons and their intronic flanking
regions were performed by either PCR/Sanger sequencing using primer sequences and
PCR conditions as described by Delgado M.A. et al., 2014 [6] or by a skeletal dysplasia Next
Generation Sequencing panel (SkeletalSeqV5, n = 368 genes, SeqCap EZ (Roche Nimblegen
Inc., Foster, CA, USA) on a NextSeq sequencer (Illumina, Inc., Foster, CA, USA) [28].
Genetic studies were complemented by additional CNV analysis using the NGS panel, SNP
arrays (Infinium CytoSNP-850K v1.2 BeadChip, Illumina [29] and/or MLPA EXT1/EXT2
(P215-B1) analysis performed in DNA samples of those with previous negative results,
following the manufacturer’s instructions (MRC-Holland, Amsterdam, The Netherlands).
Variant nomenclature was according to HGVS nomenclature (www.hgvs.org, accessed on 1
August 2022) and classified according to the recommendations of the American College of
Genetics and Genomics [30,31].

The identified variants were assessed for amino acid conservation in silico pathogenic-
ity prediction analysis: CADD V1.4 (http://cadd.gs.washington.edu/, accessed on 1 Au-
gust 2022), SIFT (https://sift.bii.a-star.edu.sg/, accessed on 1 August 2022), Polyphen
(http://genetics.bwh.harvard.edu/pph2/, accessed on 1 August 2022), MutationTaster
((http://www.mutationtaster.org/, accessed on 1 August 2022), various splicing programs
available in Alamut V2.14 (Interactive Biosoftware, Ruan, France), and allelic frequen-
cies in gnomAD (https://gnomad.broadinstitute.org/, accessed on 1 August 2022). NGS
Copy number variant (CNV) analysis was performed using an in-house tool, LACONv
(INGEMM, Madrid, Spain). Variant nomenclature was according to HGVS nomenclature
(www.hgvs.org, accessed on 1 August 2022) and classified according to the recommenda-
tions of the American College of Genetics and Genomics [30,31].

2.3. Statistical Analysis

Descriptive statistics were performed using absolute and relative frequencies for cate-
gorical variables and mean or median for continuous variables, depending on the dispersion
of the data: standard deviation (SD) or interquartile range (IQR), respectively. The height
z score (Pz) was calculated using LSM-Growth with respect to the Argentine population.
Short stature was defined as a z score less than −2 SD. The cohort was analyzed according
to an exploratory t-test and to the detected EXT1 or EXT2 variants to analyze the difference
between the continuous variables (age, number of surgeries, age first symptom, height z score)
and chi square or Fisher’s Exact test for categorical variables (gender, child/adult, pain, ≥10
osteochondromas, surgery, severity). For the severity variable, we consider Grade I versus
Grades II and III given the small number of cases. The α level 0.05 and R 4.1.0 was used. The
data was dissociated according to the Personal Data Protection Law.

3. Results
3.1. Clinical and Phenotypic Studies

Clinical and radiological findings from 55 patients were obtained. From the indexes,
14 had a familiar inheritance and the 21 had sporadic mutations. Hence, only 14 families
are described in Figure 1. Average age was 13.56 years old (r: 2.21–55.3); 63.6% (n = 35)
were male and 36.4% (n = 20) female. Twenty-three cases had adult bone age. Forty-
three cases lived in Buenos Aires and 12 in other provinces. The median age of the first
symptom was 2.0 years (IQR 0.75–4.7) and no differences were found between familial
forms and de novo variants. The most frequent locations of the first symptoms were knees
and wrists. Main clinical features reported were chronic pain 74.5% (41/55), in 65.6% of
children (21/32) and 87.0% of adults (20/23). Functional limitation in the upper limbs was
observed in 21/51 (41.2%) cases and in the lower limbs in 14/51 (27.5%). The most frequent
affectation is limitation in prono-supination in the upper limbs and in full flexion in the

www.hgvs.org
http://cadd.gs.washington.edu/
https://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/
http://www.mutationtaster.org/
https://gnomad.broadinstitute.org/
www.hgvs.org
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knees. Median z score of stature in children was −0.18 (IQR −0.93/0.7) SD and in adults
−1.44 (IQR −2.43/−0.49) SD. Short stature was observed in 16.4% (9/55), 34.8% (8/23) of
adults and 3.1% (1/32) of children (p = 0.002). Short stature was present in 4/35 (11.4%) of
males and 5/20 (25%) of female (p = 0.19) (Table 1 [32–49]).
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Figure 1. Segregation analysis in the ARG MO families. Indexes are marked with an arrow. Severity
score and current age (in brackets) are shown in blue. Patients included in the clinical analysis were
named with the prefix EM and a corresponding number. (A) Pedigrees of MO ARG Families with
pathogenic variants in EXT1. The red asterisk in ARG77 (EM41) indicates that the patient was also
included in the clinical analysis. (B) Pedigrees of MO ARG Families with pathogenic variants in
EXT2. (C) Pedigrees of MO families with NO pathogenic variantes in EXT1 or EXT2.
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Table 1. Phenotypic data from MO index patients and pathogenic variants detected in EXT1 and EXT2 genes.

Age (y) Family History
(FH)/Sporadic (S) Sex (F/M) Gene Exon/ Intron cDNA Variant Predicted Protein ACMG

Classification
Height
Z Score

Severity
by

PedriniScore *

PMID
Reference

ARG53
(EM9) 2.6 FH F EXT1 Ex1 c.812A>G p. (Tyr271Cys)

Likely pathogenic
(PM2, PM5,

PP3, PP4, PP5)
−0.8 IIA [49]

PMID: 24532482

ARG54
(EM15) 8.1 FH F EXT1 Ex10 c.1910dup p. (Tyr637*)

Pathogenic
(PVS1, PM2,

PP4, PP5)

−1.8
neurological

delay
IIIB [42]

PMID: 29529714

ARG55
(EM2) 9.1 S M EXT1 Ex6 c.1460T>C p. (Val487Ala)

VUS
(PM2, PP3,

PP4, PM6, BP1)
−1.5 IIA This study

ARG61
(EM3) 3.5 S F EXT1 Ex6 c.1432dup p. (Ser478Phefs*43)

Pathogenic
(PVS1, PM2,

PP4, PP5)
1.6 IB

[43]
PMID: 8981950

[44]
PMID: 9521425

[11]
PMID: 19810120

[37]
PMID: 30334991

ARG62
(EM18) 10.2 S M EXT1 Int2 c.1056+1G>A p. ?

Pathogenic
(PVS1, PM2,

PP4, PP5)

−1.9
neurological

delay
IIIA

[39]
PMID: 9150727

[48]
PMID: 34409107

ARG64
(EM23) 20.4 S M EXT1 Ex5 c.1387G>T p. (Gly463*) Pathogenic

(PVS1, PM2, PP4)

−0.6
neurological

delay
IIIB This study

ARG71
(EM34) 18.4 S F EXT1 Ex1 c.535C>T p. (Gln179*) Pathogenic

(PVS1, PM2, PP4) −3.3 IIIB [21]
PMID: 17041877

ARG73
(EM39) 14.6 FH M EXT1 Ex1 c.706dup p. (Leu236Profs*4) Pathogenic

(PVS1, PMM2, PP4) −1.9 IIIB This study

ARG75
(EM43) 8.1 S F EXT1 Ex1 c.249del p. (Gln84Argfs*52)

Pathogenic
(PVS1, PM2,

PP4, PP5)
−0.2 IB [47]

PMID: 9150727

ARG76
(EM44) 15.5 S M EXT1 Ex1 c.952G>T p. (Glu318*) Pathogenic

(PVS1, PM2, PP4) −0.4 IIA This study
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Table 1. Cont.

Age (y) Family History
(FH)/Sporadic (S) Sex (F/M) Gene Exon/ Intron cDNA Variant Predicted Protein ACMG

Classification
Height
Z Score

Severity
by

PedriniScore *

PMID
Reference

ARG77
(EM41) 37.2 FH M EXT1 Ex6 c.1469del p. (Leu490Argfs*9) Pathogenic

(PVS1, PM2, PP4) −1.9 IIIB

[50]
PMID: 7550340

[4]
PMID: 23439489

[35]
PMID: 29126381

[34]
PMID: 30806661

[46]
PMID: 33632255

ARG78
(EM45) 9.7 S M EXT1 Ex10 c.2029C>T p. (Gln677*)

Pathogenic
(PVS1, PM2,

PP4, PP5)

−0.1
neurological

delay
IIA [36]

PMID: 16283885

ARG79
(EM46) 9.9 FH M EXT1 Ex10 c.1913_1916dup p. (Leu642Glnfs*13)

Pathogenic
(PVS1, PM2,

PP4, PP5)
−0.7 IB [21]

PMID: 17041877

ARG80
(EM49) 21.0 S F EXT1 Ex1 c.288del p. (Lys97Serfs*39) Pathogenic

(PVS1, PM2, PP4) −3.0 IIIB This study

ARG81
(EM50) 16.4 S M EXT1 Int4 c.1284+1G>T p. ? Pathogenic

(PVS1, PM2, PP4) −0.5 IIIB

[27]
PMID: 16088908

[34]
PMID: 30806661

ARG84
(EM54) 13.6 FH M EXT1 Ex3 c.1087G>T p. (Gly363*) Pathogenic

(PVS1, PM2, PP4)

−0.8
neurological

delay
IIIB This study

ARG85
(EM55) 20.3 S F EXT1 Int3 c.1164+2T>A p. ? Pathogenic

(PVS1, PM2, PP4) −2.4 IIIA This study

ARG86
(EM56) 14.6 FH M EXT1 Ex6 c.1469del p. (Leu490Argfs*9)

Pathogenic
(PVS1, PS4, PM2,

PP4, PP5)
−0.1 IIIA

[50]
PMID: 7550340

[4]
PMID: 23439489

[35]
PMID: 29126381

[34]
PMID: 30806661
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Table 1. Cont.

Age (y) Family History
(FH)/Sporadic (S) Sex (F/M) Gene Exon/ Intron cDNA Variant Predicted Protein ACMG

Classification
Height
Z Score

Severity
by

PedriniScore *

PMID
Reference

ARG52
(EM6) 16.5 FH M EXT2 Ex3 c.560T>G p. (Leu187Arg) VUS (PM2, PP3,

PP4, BP1)
not

included not included

This study
Hypochondroplasia

FGFR3
NM_000142.4:
c.1620C>A p.
(Asn540Lys)

ARG57
(EM10) 5.4 S F EXT2 Ex4 c.760del p. (Leu254Serfs*16)

Pathogenic
(PVS1, PM2,

PP4, PP5)
0.0 IIA [42]

PMID: 29529714

ARG59
(EM16) 10.2 S M EXT2 Ex6 c.1016G>A p. (Cys339Tyr) VUS

(PM2, PP3, PP4, BP1) −1.2 IB

[33]
PMID: 19839753

[45]
PMID: 30334991

[34]
PMID: 30806661

ARG63
(EM19) 8.0 FH F EXT2 Ex2 c.514C>T p. (Gln172*)

Pathogenic
(PVS1, PS4,
PM2, PP4)

−0.1 IIA

[51]
PMID: 8894688

[47]
PMID: 29909963

[48]
PMID: 32293802

ARG67
(EM27) 20.9 S M EXT2 Ex2 c.210del p. (Arg70Serfs*42) Pathogenic

(PVS1, PM2, PP4) −0.4 IIA This study

ARG69
(EM29) 20.9 FH F EXT2 Ex3 c.560T>G p. (Leu187Arg) VUS (PM2, PP3, PP4,

BP1) −0.1 IIA This study

ARG70
(EM33) 12.6 S F EXT2 Int7 c.1173+1G>A p. ? Pathogenic

(PVS1, PM2, PP4) 0.8 IIIB [23]
PMID: 8894688

ARG72
(EM35) 18.8 FH M EXT2 Ex8 c.1234C>T p. (Glu412*) Pathogenic

(PVS1, PM2, PP4) −1.4 IB [32]
PMID: 10480354
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Table 1. Cont.

Age (y) Family History
(FH)/Sporadic (S) Sex (F/M) Gene Exon/ Intron cDNA Variant Predicted Protein ACMG

Classification
Height
Z Score

Severity
by

PedriniScore *

PMID
Reference

ARG74
(EM42) 14.5 S M EXT2 Ex2 c.429C>G p. (Tyr143*) PVS1, 0.7 IIA This study

ARG82
(EM51) 2.2 S M EXT2 Ex2 c.423del p. (Tyr142Thrfs*128) Pathogenic

(PVS1, PM2, PP4) 0.9 IB This study

ARG87
(EM48) 9.1 FH F EXT2 Ex8 c.1201C>T p. (Gln401*) Pathogenic

(PVS1, PM2, PP4) −1.9 not included

[46]
PMID: 9326317

Turner
syndrome

Transcripts—EXT1: NM:000127.3; EXT2: NM:000401.2. * According to classification by Pedrini et al.; 2011. FH—Family history. S—Sporadic. (p.?) a change in the sequence of bases in a
DNA molecule, but do not result in a change in the amino acid sequence of a protein.
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Sixty percent of patients (27/45) had 10 or more exostoses on radiographs and 40/50
(80%) brachy-metacarpals. Twenty-nine of 55 patients (52.7%) required surgery, with an
average 1.7 (r: 1–11) surgeries per patient and a median age at first surgery of 6.2 years
(r: 3.49–12.3). Functional alteration, limb axis deviation and pain were the reasons for which
surgery was performed. A total of 11.4% (5/44) of patients presented spinal exostoses;
one patient presented symptoms of spinal cord compression and required surgery. Leg
length asymmetry greater than 1 cm was observed in 14.5% (8/55) of cases, with the
average magnitude of length asymmetry being 2.2 cm (r: 1.5–4.0cm). We found intellectual
disability and/or behavioral changes in 10.9% (6/55) of patients with normal brain image
and karyotype, three of them with a family history of MO.

Clinical severity was classified according to the Pedrini score [27], class I in 34% (n:18),
class II in 24.5% (n:13) and class III in 41.5% (n:22). Two patients could not be evaluated
and classified. A total of 72.7% (16/22) of adults and 61.3% (19/31) of children presented
a moderate-severe class of disease (p 0.38) (Table 1). Twenty three of 34 men and 12/19
women presented severity class II–III (p 0.74). A wide clinical variability was observed in
most of the families, except family ARG54 (Figure 1) with a severe form in all the members
studied and a family without variant detected (not included in Figure 1) with milder forms
in both sexes.

3.2. Genetic Results

A total of 29 pathogenic variants in the 35 probands (29/35, 83%) were identified
(Table 1). We detected: 18 variants (62%) in EXT1 and 11 (38%) in EXT2; (35%) frameshifts,
(35%) nonsense, (13%) splicing and (17%) missense. No EXT1 or EXT2 pathogenic variant
was detected in 6 (17%) probands. However, one presented with a heterozygous variant of
unknown significance (PM1, PM2, PP3) in FLNB, NM_001457.4:c.5908G>A p. (Glu1970Lys)
(Larsen syndrome, MIM 150250). This variant affects a highly conserved amino acid
in the filamin repeat domain. It is absent from gnomAD and has not been previously
observed (HGMD Professional [31]). Two patients also had a dual diagnosis of a pathogenic
EXT2 variant, one of them presented X-chromosome monosomy (Turner syndrome) and
another had an FGFR3 pathogenic variant, NM_000142.4:c.1620C>A p. (Asn 540Lys)
(Hypochondroplasia).

3.3. Genotype-Phenotype Correlations

Forty-eight cases, 27 index cases and 21 family members, were divided according to
variants in EXT1 or EXT2 to explore clinical differences (Table 2). Cases EM6 and EM48,
shown in Figure 1, were excluded from the analysis because they presented MO associated
with hypochondroplasia and Turner syndrome, respectively. No significant differences for
age, gender, family cases and child/adult ratio between the two groups were observed. The
average height in both groups was less than the 50th centile. However, patients with EXT1
variants showed a height z-score 1.03 SD lower than those with EXT2 variants and greater
clinical severity (II–III vs. I). Although the difference was not significant, the presence of
pain, the number of exostoses, the cases that required surgery and the number of surgeries
per patient were greater in the EXT1 group (Table 2). Six patients with pathogenic variants
in EXT1 showed intellectual disability (low CI), normal brain image and karyotype.

Five index cases (and two family members) without a pathogenic variant detected in
EXT1 or EXT2 with a median age of 16.8 years (IQR 6.8–22.0) showed a median height z
score of −0.16 (IQR 0.11/−2.04). Four males (three from the same family and one from
another family) presented clinical severity class III, with paternal inheritance, while three
sporadic cases presented severity class I.
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Table 2. EXT1 and EXT2 genotype-phenotype correlation in index patients. Univariate analysis (n:48).

Variable EXT1
(n = 26)

EXT2
(n = 22) p Value

Child (n) 15 14
Adults 11 8 0.68

Gender (n)
Female 12 8
Male 14 12 0.49

Family history of Osteochondromatosis (n)
Yes 15 16
No 11 6 0.28

Age–year
x (SD) 17.4 (11.6) 14.8 (10.7) 0.43

Age first symptom
x (SD) 3.7 (5.6) 3.4 (3.9) 0.84

Clinical class (n =46)
I 5 10
II–III 21 10 0.03 *

Height z score
x (SD) −1.19 (1.38) −0.16 (0.77) 0.003 **

Pain–yes (n) 17 11 0.09 *

Number of osteochondromas (n)
≥10 17/24 8/17 0.12

Surgery required (n)
17 10 0.17

Number of surgeries per child
median (IQR) 2.0 (2–4) 2.5 (1–3) 0.25

* Fisher’s Exact test, ** two sample t-test.

4. Discussion

In this study, the diagnosis of MO was first established from phenotypic characteristics
and radiographic findings. The hereditary condition was observed in 40% of probands,
which is similar to previous data in our country [6] but lower than the proportion of
MO patients with family history reported in 36 worldwide cohorts (80%) The autosomal
dominant condition characterized by heterozygous pathogenic variants in EXT1 or EXT2
were identified by a summatory of genetic tests. As described by other authors, EXT1
variants were the most prevalent alterations [27,34,45]. No variant was detected in six (17%)
probands, two familial and four sporadic, which is a similar percentage to some cohort
studies [27,52] and higher than others [36]. Mosaic EXT1/EXT2 variants have been reported
in MO [53] and these can be detected using the NGS panel (unpublished data) but none
were identified in this cohort. Thus, variants in unscreened regions of these genes (introns,
etc.,) or in unidentified additional genes may explain these negative cases. One of these
probands had a VUS in FLNB (Table 1). Two individuals had a dual diagnosis, with MO
and Turner syndrome or MO and hypochondroplasia.

Nevertheless, the phenotype cannot be predicted based on variant type or which gene is
mutated. In this study, we found lower height z-score and moderate-severe clinical severity
by Pedrini’s classification, in cases with EXT1 variants, findings previously observed in other
populations [27,35]. In this sense, short stature was present in 35% of adults, similar to that
described by other authors [54]. In contrast to that observed by Pedrini et al., we did not find
differences in the percentage of short stature or severity between men and women [27].

A high prevalence of chronic pain was observed in both children and adults and was
greater in patients with EXT1 variants, although the difference was not significant. In previous
studies, including one we performed [55], pain has a negative impact on quality of life [56].
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There is a consensus about the patients’ treatment, related to the symptoms and complications.
In this regard, functional alterations, pain and limb axis deviations were the reasons for
surgery in our cohort. Although surgical procedures prior to the study could modify the
clinical classification of severity, the number of patients who required surgery tended to be
higher in cases with an EXT1 variant, as well as the number of surgeries per child.

The molecular mechanism underlying the pathogenesis of MO is still unclear. Many
studies have shown that the etiology of osteochondroma is largely due to genomic muta-
tions in EXT1 and EXT2, resulting in the loss or insufficient synthesis of glycosyltransferases
which are related to HS synthesis [56]. Both genes encode glycosyltransferases, which
are essential for the synthesis of HS, a polysaccharide present in all animal tissue cells
and the extracellular matrix. HS covalently binds to core proteins to form heparin sul-
fate proteoglycans (HSPGs). HSPGs are localized in the cell membrane and extracellular
matrix, which can bind to growth factors and participate in the signal transduction pro-
cess of chondrocytes. These hetero-oligomeric complexes EXT1/EXT2 localized in the
Golgi apparatus catalyze the HS synthesis process [57]. The truncated HSPG disturbs
specific growth-factor binding in chondrocytes, resulting in abnormal signaling and altered
endochondral ossification, thus leading to MO [9].

In this cohort, novel variants were identified, most of which were classified as
pathogenic. The novel EXT1 variants in the canonical splice sites, c.1164+2T>A and
c.1284+1G>T (intron 3 and 4, respectively) and c.1173+1G>A (intron 7) rather than for EXT2
showed a pathogenic effect that correlates with severity of the Grade III disease. A total
of 83% of genomic variants are predicted to result in a truncated protein, 35% frameshifts,
35% nonsense variants and 13% splice variants. Missense variants were detected in only
17% of patients.

A high degree of genetic variability was observed due to the highly diverse ethnic
origin of the Argentine population, as the consequence of the mixture of native genes
with genes that come predominantly from European Mediterranean countries, especially
Italy and Spain, and, to a lesser extent, from Central and Eastern Europe and the Middle
East [58]. Indeed, some of the detected pathogenic variants have been previously reported
in patients of Caucasian descent.

Six patients, with EXT1 pathogenic variants, presented intellectual disability and/or
behavioral problems. Three of them had no family history of osteochondromas. Recent
studies report skeletal involvement together with other clinical manifestations including
dysmorphism or multiple congenital anomalies and various degrees of developmental
delay/intellectual disability including an EXT1 MO patient [57]. Despite the estimated
incidence of malignant degeneration to chondrosarcoma in 2–5% of patients [5,6] we did
not observe cases, perhaps due to the young age of patients.

5. Conclusions

The implementation of NGS has substantially aided in the genetic diagnosis of MO. In this
study, the clinical and genetic diagnoses were confirmed in 29/35 index patients presenting
MO and many of them were novel variants. Initial diagnosis was by radiological findings, but
interestingly, in our cohort, 40% of the probands had a family history of MO. Patients with
EXT1 variants showed a height z-score of 1.03 SD lower than those with EXT2 variants and
greater clinical severity (II–III vs. I). This study improves the diagnosis and knowledge of MO,
reporting new pathogenic variants and forwarding the worldwide collaboration necessary to
promote the inclusion of patients into future biologically based therapeutics.
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