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ABSTRACT

Motivation: Difference in-gel electrophoresis (DIGE)-based protein
expression analysis allows assessing the relative expression of
proteins in two biological samples differently labeled (Cy5, Cy3
CyDyes). In the same gel, a reference sample is also used (Cy2
CyDye) for spot matching during image analysis and volume
normalization. The standard statistical techniques to identify
differentially expressed (DE) proteins are the calculation of fold-
changes and the comparison of treatment means by the t-test. The
analyses rarely accounts for other experimental effects, such as
CyDye and gel effects, which could be important sources of noise
while detecting treatment effects.
Results: We propose to identify DIGE DE proteins using a two-stage
linear mixed model. The proposal consists of splitting the overall
model for the measured intensity into two interconnected models.
First, we fit a normalization model that accounts for the general
experimental effects, such as gel and CyDye effects as well as for
the features of the associated random term distributions. Second,
we fit a model that uses the residuals from the first step to account
for differences between treatments in protein-by-protein basis. The
modeling strategy was evaluated using data from a melanoma cell
study. We found that a heteroskedastic model in the first stage,
which also account for CyDye and gel effects, best normalized
the data, while allowing for an efficient estimation of the treatment
effects. The Cy2 reference channel was used as a covariate in the
normalization model to avoid skewness of the residual distribution.
Its inclusion improved the detection of DE proteins in the second
stage.
Contact: elmer.fernandez@ucc.edu.ar
Supplementary information: R and SAS codes to analyze DIGE
data with the proposed approach are available at http://www.uccor.
edu.ar/modelo.php?param=3.8.5.15.2

∗To whom correspondence should be addressed.

1 INTRODUCTION
Nowadays, it is possible to afford a global view of the state of
a proteome by means of two-dimensional (2D) gel electrophoresis
(2DE). The 2DE technique is a high-throughput option for measuring
changes in expression levels of hundreds of individual proteins
simultaneously. The comparison of 2DE gel images from different
biological samples (treatments) is a common method used to study
protein expression. Traditional experiments rely on comparing
images from at least two different gels.

In 1997, a new method for protein expression analysis known
as difference in-gel electrophoresis (DIGE) was introduced (Ünlü
et al., 1997). In this technique, up to three different biological
samples are examined in parallel on the same gel. They are labeled
with spectrally resolvable fluorescent cyanine CyDyes Cy2, Cy3 and
Cy5. Samples are then mixed prior to isoelectrofocusing (IEF) and
resolved on the same 2D gel. Each CyDye will give an independent
channel of measurement (Marouga et al., 2005). Usually Cy2 is
used to label a reference sample (a mix of all the experimental
samples) (Alban et al., 2003). This reference pool is commonly used
for spot matching during image analysis. It has also been applied
as a normalization channel for spot comparison within and between
gels. As claimed by creators of this methodology, using an internal
standard labeled with a resolvable CyDye allows avoidance of major
gel running effects, providing a more accurate comparison of spot
volume.

The primary goal of this kind of experiments is the detection
of proteins showing a statistically significant difference on
expression under different experimental conditions. This should
be accomplished in such a way that it would be possible to have
an optimal control of both false positives and false negatives
differentially expressed proteins. In DIGE, the usual statistical
analyses are based on Student’s t-test and simple ANOVA in a
spot-by-spot [protein-by-protein (P-by-P)] basis. Some properties
about the distribution of the data are assumed to apply the
referred tests. However, in many experimental situations such
distributional requirements are difficult to meet. For this reason,
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analytical software for DIGE provides tools for data normalization.
Particularly, DeCyder software (GE Healthcare, Chalfont St Giles,
UK) (Amersham, 2003) uses an ad hoc normalization procedure
based on the use of the Cy2 CyDye as a reference channel. However,
some controversy exists about the impact of this internal standard
on experimental variance and noise (Karp and Lilley, 2005), which
suggest the need for further research.

In a typical DIGE experiment, several sources of variations can
be identified a priori. Some of them act at a biological level—i.e.
treatments—and others depend on the technology itself, such as gel,
CyDye and spot (protein) variation.ACyDye effect could arise when
one CyDye reagent may be more efficiently coupled to proteins
than the others, or one of the CyDyes may render consistently
different quantum yields (Mujumdar et al., 1993). Significant
CyDye effects were described in the protein expression profile from
DeCyder normalization data (Krogh et al., 2007). Variations due to
experimental effects are not biologically interesting. They should be
estimated and removed in some way before differential expression
analysis is conducted. Otherwise, the differential expression test can
lose power and miss biologically relevant information.

The goal of this research is to introduce an alternative framework
for the statistical analyses of DIGE experiments. The framework
is general enough to handle an arbitrary number of treatments and
experimental effects that affect the development of the proteomic
experiment. In doing so, we approach the problem by means
of a two-stage statistical mixed model. A linear mixed model
(Demidenko, 2005) in the first stage accounts for the underlying
variance and covariance data structure. In this first step, we attempt
to remove noisy experimental effects (normalization model) over
the log raw data. The internal standard Cy2 is introduced as a
covariate in the normalization model, and its impact on the detection
of differentially expressed proteins is analyzed. In this way, the
use of Cy2 as an internal standard can be statistically evaluated.
In the second stage, we deal with testing protein-by-treatment
interactions—i.e. the different expression of a given protein related
to the treatment effects—in a P-by-P basis. The P-by-P model (the
second analytical stage) proposed here is similar to that used by
Krogh et al. (2007). However, in our approach the residuals from
the selected normalization model are used. On the contrary, the
approach in Krogh et al. (2007) uses the residuals from the DeCyder
ad hoc normalization. According to the DeCyder documentation the
resulting residual distributions are homogeneous in variances and
do not contain dye nor gel effects (Amersham, 2003). In addition,
our approach involves the use of statistically based techniques,
such as the Akaike information criteria (AIC), Bayesian information
criteria (BIC) and the likelihood ratio test (LRT), to evaluate the
normalization run in the first stage. Therefore, the selection of the
normalization model, as proposed here, is more objective and easy
to control by the researcher.

To prove the usefulness of this model-based framework, we
performed a step-by-step analysis of the various effects in the model
to quantify their impact on the residual distribution. This modeling
strategy was tested with data from the analysis of secretome (i.e. the
proteome of conditioned medium) from melanoma cells that express
differential levels of the tumorigenic protein SPARC (secreted
protein acid and rich in cysteine). SPARC is a secreted glycoprotein
overexpressed in melanoma and other tumors (Bos et al., 2004).
For example, SPARC expression by melanoma and glioma cells has
been linked to an aggressive phenotype in vivo (Ledda et al., 1997;

Rempel et al., 1999). However, little is known about the molecular
mechanisms that are affected by SPARC during tumor growth. In
pursuit of molecular mediators of SPARC protumoral activity, we
have designed DIGE experiments to compare the expression levels
of secreted proteins in two cell lines (treatments) with differential
expression of SPARC. By using small interfering RNA (siRNA) a
stable cell clone (L2F6) of human melanoma MEL-LES have been
developed in which SPARC expression was downregulated. SPARC
downregulation at L2F6 abolished tumor growth in a murine in vivo
model (Sosa et al., 2007). In the current research, we have analyzed
quantitative data from A DIGE experiment comparing protein levels
of four different conditioned media from L2F6 with matched
media from control cell line, LBLAST. Previous experiments using
western blotting (an independent quantitative technique) had proved
quantitative differences between treatments for four proteins present
in our study (Sosa et al., 2007). These four proteins, including
SPARC itself, were known to be differentially expressed in the L2F6
extracellular medium with respect to that of LBLAST. We have used
such four proteins in this work as gold standards to evaluate the
power of the proposed model strategy for detecting differentially
expressed proteins.

2 METHODS

2.1 Sample and data preparation
Melanoma cell lines and clones were grown following protocols described
in Sosa et al. (2007). For preparation of the conditioned media of human
melanoma, cells were seeded according to similar percentages of confluence
and grown for 24 h in serum-containing medium, washed three times with
PBS and kept in serum-free medium for additional 24 h. Conditioned media
were collected and processed as in Sosa et al. (2007). After quantification,
proteins were labeled with CyDyes as suggested by manufacturers (GE
Healthcare). Table 1 summarizes the labeling and gel experimental design.
Cy2, Cy3 and Cy5 labeled samples were mixed according to the experimental
design. For this purpose, the reference pool was prepared by mixing equal
amounts of proteins from each biological sample in the experiment and
labeling them with Cy2 Dye. IEF was performed in an Ettan IPGphor
isoelectrofocusing system (GE Healthcare), using 18 cm strips covering
pH 4–7. The resulting strips were then loaded and run on 12.5% acrylamide
gels using the Ettan Dalt Six system (GE Healthcare).

For image acquisition, labeled proteins were visualized using the Typhoon
9400 Imager (GE Healthcare). Cy2 images were scanned using 488 nm
laser and an emission filter of 520 nm. Cy3 images were scanned using a
532 nm laser and an emission filter of 580 nm. Cy5 images were scanned
using a 633 nm laser and a 670 nm Band Pass 30 Hz emission filter.
A narrow BP emission filter ensures that there was negligible cross-talk
between fluorescence channels. Photomultiplier voltage was selected for
each channel to ensure no spot was signal saturated. All gels were scanned at
100 µm resolution, and images were cropped using ImageQuant V5.0 (GE
Healthcare) prior to analyses.

Table 1. Experimental design of a DIGE proteomic study

Gel Cy2 Cy3 Cy5

1 Reference pool LBLAST L2F6
2 Reference pool LBLAST L2F6
3 Reference pool L2F6 LBLAST
4 Reference pool L2F6 LBLAST
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First, gel image analysis was performed using DeCyder 6.5V (GE
Healthcare). Spot detection was carried out on image pairs consisting of
the pooled standard and each sample from the same gel. These two images
overlay and allow direct measurement of volume ratios of spots between
the standard and the sample. Standard spot maps were matched between
gels in order to identify the same spot/protein across gels. DeCyder Batch
Processor (Amersham, 2003) provides two different data sources: the raw
data, which are the volume measured over each intensity channel, and the
corresponding normalized volume based on its internal standard. Raw data
were log transformed.

2.2 Experimental design
Table 1 displays the experimental design that yielded the data used in this
article. Four gels were used with three biological samples in each gel. In all
cases, the Cy2 channel corresponds to the same reference pool composed
by equal amounts of all samples analyzed in the experiment. Biological
variation was addressed by conditioning four samples of each cell line at
different times. Gels 3 and 4 are CyDye swaps of gels 1 and 2. From the
experimental design, one can identify the factor effects that could be included
in the statistical model. In this design, Cy3 and Cy5 are neither confounded
with treatment, nor with gel effects. However, the Cy2 effect is not separable
from the gel effects.

If rows 2 and 3 of Table 1 are interchanged, the design can be easily
interpreted as a repeated Latin Square design (Cochran and Cox, 1957).

2.3 Statistical modeling
Classical statistical linear models assume that the observed variable can be
described as Y∼N(µ, σ 2) where the mean µ can be decomposed as Xβ,
a linear combination of experimental effects β related to Y by means of
covariables x, which are the columns of matrix X. In DIGE, the observed
variable Y can be expressed as Yd = log(Id ) where Id is the measured intensity
on channel d and d = Cy3 or Cy5. The vector β is composed of the fixed
effects that could provide an additive contribution to the mean.

From the experimental design in Table 1, the model is written as

Ytdgp = µ+ Tt + Dd + Gg + Pp + TPtp + εtdgp (1)

where Ytdgp is the observation for treatment ‘t’, within CyDye ‘d’ in gel
‘g’ for protein (spot) ‘p’. The constant µ represents an overall mean value;
T , D, G and P represent the main effects of treatment, CyDye, gel and
protein, respectively. The term TP represents the interactions between main
effects. The last term is an stochastic error for which we assume a N(0, σ 2)
distribution.

The overall model on Equation (1) can be decomposed into two
interconnected equations, as proposed by Wolfinger et al. (2001), for
the microarray technology. The first equation will be referred as the
normalization model. This first model is expected to remove all the
experimental effects not related to differentially expressed proteins, and
includes the following terms:

Ytdgp = µ+Tt +Dd +Gg +εtdgp (2)

The difference between the observed value Ytdgp and the model predicted
value is the residual term,

rtdgp = Ytdgp −µ̂+ T̂t +D̂d +Ĝg

where the hat over the symbol for the effect means ‘the estimate of’. In a
second stage, and assuming that residuals from the first model have a normal
distribution, we define a protein model as:

rtdgp = Pp +TPtp +γtdgp (3)

where γtdgp ∼N(0,σ 2
γ ).

From this model, the interaction term TP allows testing differential
expression between treatments for each protein in the experiment.

Table 2. Linear fixed and mixed models for normalization of DIGE data

Model Equation Stochastic assum.

M1 Ytdgp = µ+Tt +εtdgp ε∼N(0, σ 2)
M2 Ytdgp = µ+Tt+Dd +εtdgp ε∼N(0, σ 2)
M3 Ytdgp = µ+Tt+Dd+Gd +εtdgp ε∼N(0, σ 2)
M4 Ytdgp = µ+Tt+Dd+Gd +δg·log(Cy2gp)+εtdgp ε∼N(0, σ 2)
M5 Ytdgp = µ+Tt +Dd+δg· log(Cy2gp)+Gg+εtdgp ε∼N(0, σ 2), G∼N(0, σ 2

g)
M6 Ytdgp = µ+Tt +Dd+δg ·log(Cy2gp)+εtdgp ε∼N(0, σ 2

tg)

Y, log(I) from DIGE technology; T, treatment effect; D, CyDye effect; G, gel effects; TD,
treatment-by-CyDye interaction effect; Cy2, continuous covariate containing reference
channel values; ε, random error terms.

In the classical approach provided by DeCyder, the observed data used for

analysis is Y∗
g = log(I

/
Cy2

δg
g ), where g refers to gels and ‘δ’ is a ‘centering’

constant (Amersham, 2003). Here, we decompose the previous expression
as, Y∗

g = Yg −δg ·log(Cy2g). In this way the normalization in Equation (2)
can be extended by the inclusion of the covariate log(Cy2),

Ytdgp = µ+Tt +Dd +Gg +δg ·log
(
Cy2g

)+εtdgp. (4)

In all equations above, it was assumed that εtdgp ∼N(0, σ 2), meaning that all
error terms have the same mean and variance.

We observed in our experiment that the standard assumptions about
the distribution of the error terms (homoskedasticity) were not fulfilled by
either the DeCyder normalized volumes, or by the log raw data. Therefore,
we suggest that the error distribution of both, the log raw data and the
normalized data, is best described by several N(0,σ 2

tg) densities, where ‘tg’
refers to a specific treatment × gel (TG) combination, i.e. heteroskedastic
or non-homogeneous variance models are more realistic for the data. The
suggested heteroskedasticity across TG combinations can be modeled by a
linear mixed-model accounting for the residual covariance structure.Aproper
estimation method of the dispersion parameters in these models is restricted
or residual maximum likelihood (REML, (Patterson and Thompson, 1971).
In this article, several mixed models based on different combinations of
fixed and random effects and different covariance structures were tested as
normalization models (Table 2). The fitted models were compared by means
of likelihood-based statistics, such as the AIC, the BIC and the LRT. The
first two criteria attempt to select the most informative and parsimonious
model (i.e. the one that explains the variability in the data with the fewest
possible number of parameters) by means of a penalized likelihood. In both
cases, and either in the current versions of R and SAS software languages,
smaller values of the criteria imply better models. But they do not provide
a value for the significance of the difference between alternative models.
The LRT can be used to statistically test the difference between two nested
models, i.e. the parameters in one model are a subset of the parameters in the
other model. The LRT can be applied to test hypotheses on the fixed effects,
or on the parameters associated to the covariance matrix. ML estimates are
recommended if model comparison is based on fixed effects. Instead REML
estimates are preferred in comparing covariance structures as the method
takes into account the loss in degrees of freedom due to the need of estimating
the variance components along with the fixed effects (Harville, 1977).

Boxplots of the residuals were used to check model assumptions for the
P-by-P model in the second stage of our proposal. The model that best
fitted the data was selected to test the TP interaction. The best model will
produce better standard errors for the parameter estimates and consequently
an improvement of the statistical efficiency of treatment comparisons for
each protein.

3 RESULTS
From Figure 1B, it is possible to see that the normalized
volumes, calculated by DeCyder, show a symmetric distribution
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Fig. 1. (A) Boxplots of log raw data distributions for TG combinations (Trat:
Treatment, LB:LBLAST, L2:L2F6 and gel 1 to 4). (B) Boxplots for the same
distributions but using DeCyder normalized log volumes.
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Fig. 2. Histograms showing the distribution of the logged raw data (A) and
the normalized volumes from DeCyder (B).

but the variances across treatments and gels are not homogeneous.
Therefore, the standard assumption about the distribution of the error
terms could not be fulfilled. Figure 1 suggests that the log raw data
as well as the DeCyder-normalized data could be better represented
by several normal distributions for the errors. Each distribution is
characterized through its mean and variance, i.e. N(0,σ 2

tg) where
‘tg’ refers a specific TG combination. In Figure 1, it is possible to
observe, mainly for the log raw data, that the mean values for CyDye
Cy5 are lower than for CyDye Cy3 in each gel.

Figure 2 shows the logged raw data distribution and residual
distribution after DeCyder normalization for the whole dataset. It is
possible to observe that the distributions are not symmetric for the
logged raw data, showing a right tail. To overcome this observation,
a set of normalization models were evaluated here (Table 2). They
allowed us to analyze the incidence of the different experimental
factors in the protein analysis.

After fitting each normalization model, we analyzed the model
residuals by each TG combination. Boxplots of the residual

Fig. 3. Boxplot of residual distributions by TG combinations from the six
normalization models in Table 2.

Table 3. Information criteria for each of the fitted models

Model Df AIC BIC logLik

M1 3 43255 43277 −21624
M2 4 43143 43173 −21567
M3 5 42712 42749 −21351
M4 9 17297 17364 −8639
M5 10 17248 17322 −8614
M6 16 16198 16317 −8083

Df, degree of freedom; LogLik, Log likelihood. (all the values were provided by R code).

distribution from all tested normalization models, M1 to M6, are
shown in Figure 3.

Models M1, M2 and M3 do not include the covariate log(Cy2).
Boxplots of the first three models (top panels in Fig. 3) show a
progressive improvement towards the presence of homoskedastic
errors, when adding the effects of treatments, CyDye and gel as fixed
effects in the model. For instance, model M1 only takes into account
an overall mean and the treatments effects. Note that the treatment
mean value was successfully removed, but CyDye and gel effects
are still present (notice that boxes are biased between CyDyes and
between gels). The effect of treatments was not significant under M1
(P = 0.21), but significant under M2 (P = 0.037) and M3 (P = 0.034).
The fitting criteria (Table 3) show that M3 is preferred over the two
other previous models. Therefore, treatments, as well as CyDye and
gel effects, should be included in the model. This conclusion is
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Fig. 4. Histograms of the overall residuals for the different normalization
models.

Table 4. Estimated variances at each TG combination under M6 norm-
alization model

Gel 1 Gel 2 Gel 3 Gel 4

Treat LB L2 LB L2 LB L2 LB L2
σ 2

tg 0.220 0.169 0.191 0.263 0.187 0.182 0.292 0.147

LB, LBLAST; L2, L2F6.

not evident from the histograms obtained from the distribution of
the residuals in Figure 4. However, boxplots (Fig. 3) and histograms
(Fig. 4) of these three models suggest that the residuals follow a non-
symmetrical distribution. When the covariate log(Cy2) was entered
into the model (M4, M5 and M6), the distribution of the residuals
became more symmetric (bottom panels in Fig. 3). The inclusion
of the covariate produces a significant decrease in the AIC, BIC
and loglikelihood information criteria (Table 3). However, M6 that
accounts for different residual variances in each TG combination
had a better fit (lowest AIC, BIC and loglikelihood values) than the
other models (Table 3). The model with heterogeneous error variance
(M6) produced the best normalization of the melanoma data.

The estimates of the residual variances for each TG combination
are shown in Table 4. The estimated coefficients for log(Cy2) in
M6 were statistically different from 1 (P < 0.001). The pairwise
comparisons of these coefficients between gels displayed significant
differences. Once the ‘normalization model’ was applied over the
whole dataset, spot-by-spot (P-by-P) analyses were run on the
residuals [Equation (3)]. In this second stage, we model the protein
main effect (Pp) and the protein-by-treatment interaction (TP—our
biological target). Figure 5 shows the boxplots and the histograms
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Fig. 5. Boxplots and histogram of the P-by-P residuals [Equation (3)] under
M6 normalization model.

Table 5. Estimated coefficients for TP interaction for the known dif-
ferentially expressed proteins using the P-by-P model under M3, M6 and
DeCyder® normalization

Normalization strategy

Linear model Linear mixed Software
M3 model M6 DeCyder

Protein bTP P bTP P AR P

SPARCa 0.986 0.064 3.324 0.015 4.265 0.003
N-Cadherinb 0.686 0.699 2.131 0.021 2.893 0.025
1169c 0.537 0.006 1.584 0.003 2.166 0.0003
HSP27d −0.48 0.298 −1.27 0.008 −1.81 0.001

P, P-value. aSPARC, bN-Cadherin (Sosa et al., 2007), cunpublished dHSP27 (Sosa
et al., 2007).AR, LogAverage Ratio; bTP , the estimated coefficient for the TP interaction
term in the protein model.

of the residuals (γ̂) for the P-by-P analysis after M6 normalization.
It is verifiable that in both cases the new residuals obtained from
Equation (4) follow normal distributions, assumption which is
needed to test the hypothesis on treatment differences. Table 5
displays the estimated treatment-by-protein (TP) effects for the four
known differentially expressed proteins [SPARC, N-Cadherin, 1169,
HSP27—see Sosa et al. (2007) and A.S. Llera and O.L. Podhajcer,
unpublished data]. The estimates were obtained using the P-by-P
analyses from M3, M6 and DeCyder normalization strategies.

Observe that the use of residuals from models not including
the covariate log(Cy2) induces the possibility of missing some
differentially expressed proteins. All the target proteins were
detected using the residuals from the heteroskedastic model (M6).
The normalized log volume from DeCyder also allowed the
detection of the target proteins.

Using the residuals from model M6, the estimated fold change
between treatments can be calculated by means of exp(bTP), where
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bTP is the estimated coefficient for the treatment-by-gel interaction
term in Equation (3) of a particular protein.

4 DISCUSSION
The use of DIGE technology for massive protein expression analysis
has been growing since their introduction in the late 90s. Based
on the similarity with microarray technology, several approaches
have been applied to DIGE in order to remove some specific non-
biological effects, such as the CyDye-intensity dependence (Fodor
et al., 2005), variance stabilization (Kreil et al., 2004) and some
location-specific effects (Kultima et al., 2006). However, lack of
established analyses of protocols causes that different preprocessing
strategies (normalization) result in different proteins to be significant
(Meleth et al., 2005). We propose a mixed-model-based framework
for statistical analysis of DIGE data. This framework is flexible
enough to be applied over a wide range of experimental designs, with
respect to the number of treatments and other sources of variation.
It was shown that the application of the two-stage linear mixed
model allows an overall data normalization, and the estimation of
treatments effects in a P-by-P basis. The identification of those
non-biological effects that contribute the most to the normalization
stage is a particularly relevant finding for quality control of the
lab (Draghici et al., 2003). The removal of noisy effects was
also addressed as an important design issue in cDNA microarray
experiments (Yang and Speed, 2002).

The statistical modeling approach to 2D-DIGE data presented
here, allows verifying model assumptions prior to the protein
analysis in a unified way. Model selection can be done by means
of statistically sound fitting criteria, such as the AIC and BIC, as
well as the LRT (Littell et al., 2006).

Accounting for an appropriate covariance structure of the data
provides suitable backdrops by which to assess the significance of
interesting effects. Thus, better estimations of ‘P’ value are expected
to be obtained. This will impact positively on any function of
the P-values, such as the false discovery rate (FDR), which is a
common practice in experimental settings involving multiple tests
of hypotheses (Karp et al., 2007; Qian and Huang, 2005; Storey and
Tibshirani, 2003).

The use of the modeling strategy in two-stages [Equations (2)
and (3)] instead of fitting a protein model [Equation (1)], has the
advantage of using more information in the normalization of the
data. In addition, it provides more efficient estimation of the CyDye
and gel effects. It was found in the melanoma cell experiment
analyzed here that the Cy3 channel consistently displayed higher
values than the Cy5 channel. The proposed approach can account
for this effect and handle it appropriately.

The inclusion of the covariate log(Cy2) in the normalization
model was helpful in order to obtain symmetric residual
distributions. After using the covariate, the distributions were similar
to those achieved by DeCyder software. This fact can be understood
if we identify δg as the estimated regression coefficient for the
covariate log(Cy2g) in the gel ‘g’ and rewrite the normalization
model as follows

log
(
I..g

) = ...+δg ·log
(
Cy2g

)+ε..g ⇒
⇒ log

(
I..g

)−δg ·log
(
Cy2g

) = ...+ε..g =
= log

(
I..g

Cy2
δg
g

)
= ...+ε..g

where g =1..4, with the dots (…) indicating treatment, CyDye
and gel effects. The above expression resembles the normalization
equation published in the DeCyder® documentation. The main
difference between both is that the coefficients δg is here estimated
by means of likelihood-based procedures using all the data. The
procedure employed by DeCyder to estimate the log(Cy2) coefficient
is based on least square means, and implemented for each gel–
CyDye combination separately.

When the log(Cy2) covariate was not included (models M1–M3)
the residual distributions showed homogeneity of variances, but they
were strongly skewed. The use of the log(Cy2) produces symmetric
distribution of the residuals, but introduces data correlations within
gels. Such data correlation could be explained by the fact that for
a particular protein the Cy2 effect varies across gels. The estimated
variance components for models including random gels effects, with
and without the covariate log(Cy2), were 0.455 to 0.079, respectively
(data not shown). Therefore, higher correlation between data in the
same gel should be expected when using the covariate log(Cy2).
Thus, the heteroskedastic model for the residual covariance could be
a good choice during the normalization stage. With the dataset used
here, the best normalization model (lowest BIC and AIC values—
Table 4) was the one accounting for a heteroskedastic residual
covariance structure in the error terms (model M6), i.e. a model
accounting for non-constant variances across TG combinations
(Table 4).

The correlation induced by the inclusion of the Cy2 channel was
also suggested by the analysis of the distribution of the ‘P’ values
in simulated and real self–self experiments (Karp et al., 2007).
In spite of this observation, the inclusion of the Cy2 channel
seems to be relevant in DIGE experiments as it makes it possible
to fulfill the required distributional assumptions in order to infer
differential expression. Although including the Cy2 channel induces
a correlation structure, these covariances can be appropriately
modeled using the mixed-model normalization approach. In the
study of melanoma cells, most of the known differentially expressed
proteins were not identified in those models lacking the covariate
log(Cy2).

The model accounting for the internal reference and for
heteroskedasticity of the distribution during normalization (M6),
allowed the proper identification of known differentially expressed
proteins in the melanoma cell study. The advantage of the use of
statistical modeling for normalization is the opportunity to control
source of well-known variation prior to protein identification. The
ad hoc normalization from DeCyder, even removing experimental
effects, does not allow the identification of the relative contribution
of them. Even more, the statistical significance of these sources
of variation can be formally tested. Our approach allows fitting
specific models that best describe the data at hand and verify
the fulfillment of the required distributional assumptions for the
protein analysis. All the normalization coefficients are estimated
by means of likelihood-based procedures being in this way less
sensitive to missing data. Moreover, the knowledge gained by
fitting an experimental design-based model is a welcome input
in the design of new 2D-DIGE experiments. A more complex
experimental design, where extra terms could be added, would
undoubtedly yield more interesting data to show the advantages of
this mixed-model approach. A guide for the application of mixed
model approach in the normalization stage is available in the
Supplementary Material.
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