
Documento disponible para su consulta y descarga en Biblioteca Digital - Producción
Académica, repositorio institucional de la Universidad Católica de Córdoba, gestionado por el
Sistema de Bibliotecas de la UCC.

Gómez Pizarro, Gonzalo

Informe de Proyecto
Integrador - Cantina UCC

Tesis para la obtención del título de
grado de Ingeniería de Sistemas

Directores:

Porrini, Federico Eduardo

Carreño, Ignacio Luciano

Di Marco, Octavio

Esta obra está bajo una licencia de Creative Commons

Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Esta obra está bajo una licencia de Creative Commons Reconocimiento- No Comercial 4.0
Internacional.

https://creativecommons.org/licenses/by-nc/4.0/deed.es
https://creativecommons.org/licenses/by-nc/4.0/deed.es

Universidad Católica de Córdoba

Facultad de Ingeniería

Proyecto: Cantina UCC

Informe Final de Grado
Alumnos:

●​ Gómez Pizarro, Gonzalo

Directores:

●​ Porrini, Federico Eduardo
●​ Carreño, Ignacio Luciano
●​ Di Marco, Octavio

xxx de <mes> de 2025

Córdoba - Argentina

1

ÍNDICE
ÍNDICE​ 2
RESUMEN - ABSTRACT​ 6

Español​ 6
English​ 6

PRESENTACIÓN DEL TEMA​ 8
GLOSARIO​ 9
DIAGNÓSTICO (PROBLEMÁTICA)​ 10

Estado del Arte​ 10
Impacto​ 10

Para los estudiantes y docentes:​ 10
Para la administración de la cantina:​ 10

OBJETIVOS​ 12
Objetivo Global​ 12
Objetivos Específicos​ 12

MARCO TEÓRICO​ 13
1. Contexto General del Problema​ 13
2. Análisis de Campo​ 13

2.1. Perspectiva de la Administración: La Entrevista Clave​ 13
2.2. Percepción de los Usuarios: Encuesta de Validación​ 14
2.3. Conclusión del Análisis​ 15

3. Opciones Similares en el Mercado​ 15
El Vacío que Cantina UCC Busca Llenar:​ 16

4. Tecnologías Investigadas​ 17
Frontend | UI​ 17

Next.js:​ 18
React.js:​ 18
Vue.js:​ 19
Angular:​ 19

Backend​ 20
FastAPI:​ 21
Django:​ 21
Flask:​ 21
Node.js (Express.js):​ 22
Go (Gin Gonic):​ 22

Despliegue y Servicios en la Nube:​ 23
AWS (Amazon Web Services):​ 23
Google Cloud Platform (GCP):​ 24
Microsoft Azure:​ 24

Herramientas de Integración y Despliegue Continuo (CI/CD)​ 25
Jenkins​ 25
GitHub Actions​ 26

2

GitLab CI/CD​ 26
Plataformas de Pago en el Ecosistema Argentino (Opciones para integrar pagos
online)​ 27

Criterios de Evaluación​ 27
Infraestructura para la Comunicación Transaccional por Correo Electrónico​ 29

Impacto en la Operativa​ 29
Estrategias de Pruebas del Sistema​ 31

Pruebas Unitarias​ 31
Pruebas de Integración​ 31
Pruebas de Aceptación de Usuario (UAT)​ 32
Pruebas Funcionales​ 32

PROPUESTA DE SOLUCIÓN​ 34
1 Alcance Funcional​ 34

Historias de usuario:​ 34
Usuarios Invitados (sin cuenta)​ 34
Usuario Registrado (extiende usuario invitado)​ 34
Administradores de la cantina:​ 34

Lo que está incluido en el Alcance Funcional:​ 35
Lo que queda fuera del Alcance Funcional:​ 35

2 Diseño​ 35
Pantallas​ 35

En el frontend de la cantina (para clientes)​ 35
En el frontend de administración (para los administradores de la cantina)​ 36

Diagramas​ 36
Tecnologías elegidas​ 43

Frontend: Next.js​ 43
Backend: FastAPI con Python​ 43
Despliegue y Servicios en la Nube: Google Cloud Platform (GCP)​ 43
Integración y Despliegue Continuo: GitHub Actions y Docker Hub​ 44
Plataforma de pagos​ 44

Arquitectura​ 45
1. Arquitectura General​ 45
2. Componentes Principales de la Arquitectura en detalle​ 46
3. Diagrama de la Arquitectura​ 47
4. Modelo de Comunicación​ 47
5. Consideraciones de Escalabilidad y Seguridad​ 48

3 Implementación​ 49
Despliegue inicial​ 49
Desarrollo basado en historias de usuario​ 49

4 Pruebas​ 49
Casos de Prueba Funcionales:​ 50
Aclaración sobre el Entorno de Pruebas​ 53
Otras aclaraciones​ 53

IMPACTO ECONÓMICO​ 55

3

1. Metodología y Supuestos Clave​ 55
Escenarios Definidos:​ 55
Pila de Infraestructura:​ 55
Estimación de uso por compra​ 55

Consumo GCP por Compra:​ 55
Uso de Vercel (frontend):​ 58
Firebase Authentication​ 59
Comisiones de Mercado Pago​ 59
Consumo amazon SES por Compra​ 59

2. Análisis de Costos Estimados por Componente​ 59
Costos de GCP (us-central1)​ 59

Escenario de Consumo Bajo (3k Compras/Mes)​ 60
Escenario de Consumo Medio (30k Compras/Mes)​ 61
Escenario de Consumo Alto (150k Compras/Mes)​ 62
Corrección del 3er escenario​ 63

Costos de Vercel​ 64
Costos de Mercadopago​ 64
Costos de Amazon SES​ 65
Emails por compra​ 65

4. Análisis Costo-Beneficio Conciso​ 65
5. Para tener en cuenta​ 66
6. Resumen de Resultados y Conclusión Final​ 66

RSU​ 68
IMPACTO SOCIAL​ 69

Beneficio o Impacto Positivo General​ 69
Segmentos de la Población Beneficiados​ 69
Inclusión y Reducción de Brechas​ 69

IMPACTO MEDIOAMBIENTAL​ 70
Eliminación de tickets impresos​ 70
Concientización sobre la eliminación de tickets impresos​ 71
Reducción del desperdicio alimentario​ 71
Infraestructura sustentable​ 71

BENEFICIOS POST IMPLEMENTACIÓN​ 73
Beneficios Tangibles (Operativos y Financieros):​ 73
Beneficios Intangibles (Experiencia y Estrategia):​ 73

CONCLUSIÓN​ 74
Próximos Pasos​ 75

ANEXOS​ 78
1. Entrevista con la Administración de la Cantina​ 78
2. Encuesta a usuarios de la cantina - Para acceder deberá pedir acceso - También
se puede ver el excel con las respuestas donde se pueden aplicar distintos filtros y
ver los gráficos con los filtros aplicados​ 78
3. Caso Gallina Blanca​ 78
4. Caso PIA​ 78

4

5. Google Datacenters​ 78
BIBLIOGRAFÍA​ 79

5

RESUMEN - ABSTRACT

Español
Este proyecto de grado aborda la problemática de las largas filas y los tiempos de espera en
la cantina de la Universidad Católica de Córdoba (UCC), que afectan negativamente la
experiencia de estudiantes y docentes. Para resolverlo, se desarrolló una aplicación web
responsive con el objetivo de optimizar integralmente el proceso de compra y gestión de
pedidos. A lo largo de este informe, se detalla cada fase del proyecto, desde el diagnóstico
inicial y la definición de objetivos hasta la implementación técnica y el análisis de sus
impactos.

El documento comienza presentando el marco teórico que sustenta la solución, incluyendo
un análisis de campo con la administración de la cantina y un sondeo de la percepción de
los usuarios, así como un estudio de soluciones similares en el mercado y las tecnologías
evaluadas. Posteriormente, se expone la propuesta de solución, describiendo el alcance
funcional a través de historias de usuario, el diseño de la interfaz y la arquitectura de
microservicios elegida. Esta arquitectura, desplegada en Google Cloud Platform (GCP),
utiliza servicios clave como Firestore, Cloud Run y Cloud Storage, con un frontend
desarrollado en Next.js y un backend en Python con FastAPI.

Como resultado, se obtuvo una plataforma completamente funcional que permite a los
usuarios realizar compras anticipadas y gestionar planes de comida, mientras que los
administradores pueden gestionar productos, órdenes y resúmenes de ventas. Finalmente,
el informe analiza en profundidad el impacto multidimensional del proyecto:

●​ Impacto Económico: Se presenta un análisis detallado de los costos operativos bajo
diferentes escenarios de uso, demostrando la viabilidad y escalabilidad del sistema.

●​ Impacto Social y RSU: Se explora cómo la solución se alinea con los principios de
Responsabilidad Social Universitaria, mejorando la calidad de vida en el campus.

●​ Impacto Medioambiental: Se cuantifica el beneficio ecológico derivado de la
eliminación de tickets impresos y la reducción del desperdicio de alimentos.

En su conjunto, este documento no solo presenta la resolución de una necesidad operativa,
sino que también sirve como una guía completa del ciclo de vida del desarrollo de una
aplicación web moderna, evaluando sus efectos desde una perspectiva integral.

English
This final degree project addresses the problem of long queues and waiting times at the
Catholic University of Córdoba (UCC) canteen, which negatively affects the experience of
students and faculty. To solve this, a responsive web application was developed to
comprehensively optimize the purchasing and order management process. Throughout this
report, each phase of the project will be detailed, from the initial diagnosis and objective
definition to the technical implementation and analysis of its impacts.

The document begins by presenting the theoretical framework that supports the solution,

6

including a field analysis with the canteen's administration and a survey of user perceptions,
as well as a study of similar market solutions and the technologies evaluated. Subsequently,
the proposed solution is presented, describing the functional scope through user stories, the
interface design, and the chosen microservices architecture. This architecture, deployed on
Google Cloud Platform (GCP), utilizes key services such as Firestore, Cloud Run, and Cloud
Storage, with a frontend developed in Next.js and a backend in Python with FastAPI.

The result is a fully functional platform that allows users to make advance purchases and
manage meal plans, while administrators can manage products, orders, and sales
summaries. Finally, the report thoroughly analyzes the multidimensional impact of the
project:

●​ Economic Impact: A detailed analysis of operating costs under different usage
scenarios is presented, demonstrating the system's viability and scalability.

●​ Social Impact and USR: It explores how the solution aligns with the principles of
University Social Responsibility, improving the quality of life on campus.

●​ Environmental Impact: The ecological benefit derived from eliminating printed tickets
and reducing food waste is quantified.

As a whole, this document not only presents the resolution of an operational need but also
serves as a comprehensive guide to the lifecycle of modern web application development,
evaluating its effects from an integral perspective.

7

PRESENTACIÓN DEL TEMA
El proyecto Cantina UCC nace de una necesidad tangible y cotidiana observada en el
corazón de la vida universitaria: las extensas filas y los prolongados tiempos de espera en la
cantina de la Universidad Católica de Córdoba (UCC), particularmente durante las horas
pico del almuerzo. Esta problemática fue identificada de primera mano por un miembro del
equipo, quien experimentó cómo esta ineficiencia afectaba negativamente la experiencia de
estudiantes y docentes, consumiendo una parte valiosa de su tiempo de descanso y estudio.

En su concepción inicial, el proyecto buscaba ser una solución directa y enfocada: agilizar el
proceso de compra de los menús diarios para reducir las demoras. Sin embargo, un análisis
más profundo durante la fase de planificación reveló una oportunidad mucho mayor.
Desarrollar un sistema para optimizar las compras no sólo resolvería el problema de las
filas, sino que, sin añadir una complejidad excesiva, podría sentar las bases para una
modernización integral del servicio.

De esta manera, Cantina UCC evolucionó de ser una simple herramienta de gestión de
pedidos a una propuesta de valor completa. El objetivo se expandió para transformar la
operatividad de la cantina, ofreciendo una plataforma digital que no solo optimiza los
tiempos, sino que también mejora la planificación de la demanda, introduce nuevas
modalidades como los "Planes de Comida" y digitaliza el proceso de pago. El proyecto se
convierte así en una solución integral que busca modernizar el servicio, brindando una
experiencia más eficiente, cómoda y accesible tanto para la comunidad universitaria como
para los administradores del servicio.

8

GLOSARIO
Proveedores de la cantina: La Universidad Católica de Córdoba terceriza el servicio de la
cantina, por lo que los proveedores pueden cambiar con el tiempo y deberán adaptarse al
uso del sistema. La idea es que la adaptación sea sencilla y comprensible, para que el
sistema siga siendo utilizado de manera efectiva a lo largo de los años.

Planes de Comida: Sistema que permite a los usuarios la compra anticipada de menús
con descuento, fomentando la fidelización de clientes. Los administradores pueden crear y
gestionar estos planes , y los usuarios pueden adquirirlos y utilizarlos a través de la
aplicación.

Pedido Anticipado: Funcionalidad principal de la aplicación que permite a los usuarios
realizar y pagar sus pedidos con antelación. Esto tiene como objetivo reducir las filas y los
tiempos de espera en la cantina, mejorando la experiencia del usuario.

Usuario Invitado: Término para un usuario que navega por la aplicación sin registrarse.
Este tipo de usuario puede explorar el catálogo de productos y agregarlos al carrito de
compras.

Usuario Registrado: Usuario que ha creado una cuenta en la aplicación, ya sea mediante
correo electrónico o una cuenta de Google. Este nivel de acceso permite realizar compras,
gestionar planes de comida y ver el historial de pedidos.

PreOrden: Registro temporal de un pedido que se crea antes de que el pago sea
confirmado. Una vez que el pago se realiza con éxito, la información de la "PreOrden" se
transfiere a una orden definitiva y la "PreOrden" se elimina. Las "PreÓrdenes" no pagadas
se eliminan diariamente.

9

DIAGNÓSTICO (PROBLEMÁTICA)
Estado del Arte
En la Universidad Católica de Córdoba (UCC), la cantina cumple un rol fundamental al
proveer alimentos y bebidas a estudiantes, docentes y personal administrativo. Sin
embargo, durante los horarios de mayor afluencia, especialmente al mediodía, el servicio se
ve afectado por largas filas y tiempos de espera prolongados. Este problema se debe a la
acumulación de pedidos simultáneos y al proceso de pago manual, lo que ralentiza la
atención y genera congestión en el área de la cantina.

Actualmente, los usuarios deben realizar su compra de manera presencial, seleccionando
su menú, esperando en fila para realizar el pago y luego retirando su pedido. Esta dinámica
genera demoras que afectan la experiencia del usuario, ya que gran parte de su tiempo de
descanso se pierde en la espera. En particular, los estudiantes que cuentan con recreos
cortos (por ejemplo, de 20 minutos) muchas veces no tienen tiempo suficiente para hacer la
fila, lo que los obliga a optar por no comprar en la cantina o a llegar tarde a sus clases. Sin
embargo, si pudieran encargar y pagar su pedido con anticipación, tendrían la posibilidad de
retirarlo rápidamente al comienzo de su recreo y disponer del tiempo suficiente para comer
con tranquilidad.

Si bien existen soluciones digitales en el mercado para la gestión de pedidos y pagos en
comercios gastronómicos, la cantina de la UCC aún no cuenta con una plataforma que
facilite este proceso. La implementación de un sistema digital podría representar una
oportunidad significativa para optimizar la operación, modernizar el servicio y mejorar la
satisfacción de los clientes.

Impacto
La situación actual genera diversas consecuencias que afectan tanto a los clientes como a
la administración de la cantina:

Para los estudiantes y docentes:

●​ Pérdida de tiempo en filas extensas, reduciendo el tiempo efectivo de descanso o
estudio.

●​ Frustración y desmotivación al tener que esperar largos períodos sólo para comprar
un almuerzo.

●​ Imposibilidad de comprar comida en la cantina para aquellos con recreos cortos, ya
que no tienen tiempo suficiente para hacer la fila.

●​ Limitaciones en la disponibilidad de ciertos productos debido a la alta demanda
concentrada en poco tiempo.

Para la administración de la cantina:

●​ Dificultad en la gestión eficiente de los pedidos en momentos de alta demanda.

10

●​ Posible disminución en las ventas debido a clientes que deciden no comprar por la
espera prolongada.

●​ Falta de herramientas para monitorear y prever la demanda de ciertos productos.

Ante esta problemática, surge la necesidad de implementar una solución tecnológica que
permita agilizar el proceso de compra y pago, mejorando la experiencia de los usuarios y
optimizando la operatividad de la cantina. Un sistema de pedidos anticipados permitiría que
los estudiantes con poco tiempo disponible puedan simplemente retirar su pedido sin
necesidad de hacer filas, haciendo que la experiencia de compra sea mucho más eficiente y
accesible.

11

OBJETIVOS
Objetivo Global

Desarrollar una web app responsive que optimice la gestión y compra en la cantina de la
Universidad Católica de Córdoba, permitiendo a los usuarios realizar pedidos y pagos de
manera anticipada. De esta forma, se busca reducir los tiempos de espera, mejorar la
eficiencia operativa del servicio y brindar una experiencia más ágil y accesible tanto para
estudiantes y docentes como para la administración de la cantina.

Objetivos Específicos

✅ Desarrollar una interfaz para que el cliente pueda explorar, elegir y comprar los
productos ofrecidos por la cantina, comprar planes de comida y hacer uso de los mismos
y ver el estado de sus órdenes

✅ Diseñar e implementar una interfaz intuitiva y fácil de usar, asegurando una
experiencia óptima para clientes y administradores.

✅ Desarrollar un sistema de administración que permita la gestión de pedidos, productos,
planes de comidas y resúmenes de compras diarias.

✅ Integrar una pasarela de pago, para que los usuarios puedan realizar compras de
manera rápida y segura sin necesidad de pagar en efectivo.

12

MARCO TEÓRICO
El presente Marco Teórico aborda la problemática de las largas filas en la cantina de la
Universidad Católica de Córdoba (UCC) durante los horarios de almuerzo. Esta situación
afecta negativamente la experiencia de estudiantes y docentes, generando demoras y
disminuyendo la eficiencia del servicio. A continuación, se exploran diversos aspectos
relacionados con esta problemática, incluyendo el contexto general, análisis de campo,
opciones similares en el mercado y un análisis de algunas posibles tecnologías sobre las
que se implementaría el sistema.

1. Contexto General del Problema
La eficiencia en los sistemas de prestación de servicios es un campo de estudio
fundamental en la gestión de operaciones. Un fenómeno central en este ámbito es la
gestión de colas de espera, cuya optimización impacta directamente en la percepción de
calidad del servicio y la satisfacción del cliente. En entornos con picos de demanda
concentrados en breves períodos, como los servicios de alimentación universitarios, la
formación de largas filas no es solo una molestia, sino un cuello de botella operativo que
degrada la experiencia del usuario y puede generar pérdidas económicas.

Desde una perspectiva teórica, este problema se analiza a través de la Teoría de Colas, que
modela los conflictos entre la demanda de un servicio y la capacidad para proveerlo. Una
gestión ineficiente, basada en procesos manuales y secuenciales (seleccionar, pagar,
retirar), maximiza los tiempos de espera y reduce el rendimiento del sistema. Esta
ineficiencia es particularmente crítica en contextos donde el tiempo del usuario es un
recurso escaso y no renovable, como lo es el receso entre clases para un estudiante.

La solución a esta problemática se encuentra en la transformación digital de los procesos de
servicio. La implementación de sistemas de pedidos anticipados representa un cambio de
paradigma: se transita de un modelo reactivo, donde el servicio comienza cuando el cliente
llega, a un modelo proactivo, donde la orden se gestiona antes del pico de demanda. Esta
estrategia no solo optimiza el flujo de trabajo interno, sino que fundamentalmente desacopla
el proceso de pago y decisión del proceso de retiro, eliminando las principales causas de
congestión y redefiniendo la experiencia del cliente hacia un modelo más ágil y eficiente.

2. Análisis de Campo
Se realizó un análisis de campo breve centrado en los dos actores principales del
ecosistema de la cantina: la administración y los usuarios finales (estudiantes y docentes).
Este enfoque dual permitió obtener una comprensión integral de las necesidades y
expectativas desde ambas perspectivas.

2.1. Perspectiva de la Administración: La Entrevista Clave

Se llevó a cabo una entrevista directa con el administrador de la cantina de la UCC, una
acción fundamental que proporcionó una visión interna y detallada de la operación actual.
Durante la conversación, el administrador validó el diagnóstico del equipo, reconociendo

13

que la congestión se debe al proceso manual y simultáneo de pedido y pago, que crea un
"cuello de botella" y ralentiza el servicio.

El administrador mostró un claro interés en la adopción de un sistema de pedidos
anticipados , pero estableció un requisito crítico y no negociable para su viabilidad: la
garantía total de la recepción efectiva del pago antes de que el personal comience a
procesar cualquier pedido. Esta condición, más que una simple preferencia, se presentó
como un pilar fundamental para la implementación del sistema.

Ante esta exigencia, el equipo explicó que existen mecanismos técnicos que permiten
validar automáticamente los pagos antes de liberar los pedidos. Por ejemplo, mediante la
comunicación (vía webhook) entre la plataforma de cobro y el sistema de gestión. La
referencia a estos mecanismos no implicó una decisión tecnológica en esta etapa, sino que
respondió a la necesidad de ilustrar al cliente sobre la viabilidad de su requerimiento.

Adicionalmente, el administrador especificó otros requisitos operativos esenciales para
adaptar la solución a su flujo de trabajo:

●​ La necesidad de que el sistema genere automáticamente informes diarios de
compras y montos para facilitar el registro de movimientos y el cierre de caja.

●​ La funcionalidad de poder imprimir los tickets (comandas) de los pedidos
confirmados para ser procesados por la cocina.

Finalmente, se sondeó la idea de implementar "Planes de Comida" para la compra
anticipada de múltiples menús con descuento. El administrador acogió esta propuesta
positivamente, indicando que se alineaba con las prácticas de descuento actuales del
negocio y que digitalizar su gestión representaría una mejora significativa.

Ver Anexo 1

2.2. Percepción de los Usuarios: Encuesta de Validación

Para validar cuantitativamente la problemática diagnosticada y medir la aceptación de una
potencial solución digital, se realizó una encuesta formal dirigida a la comunidad
universitaria, la cual obtuvo un total de 224 respuestas. Los resultados no solo confirman la
necesidad de una intervención, sino que dimensionan la magnitud del problema.

El problema de las filas es una experiencia generalizada y medible. Un 71,7% de los
encuestados afirmó haber hecho fila por más de 10 minutos en la cantina para cualquier tipo
de compra (por lo menos alguna vez). Al analizar específicamente el proceso del almuerzo
(entre quienes consumen), los tiempos de espera percibidos son significativos: un 37,1%
reporta una espera de 10 minutos, un 13,2% de 15 minutos y un 1.8% de más de 20
minutos. Esto indica que para el 52,1% de los consumidores de almuerzos, el proceso
completo demanda 10 minutos o más. Al ponderar los tiempos de espera según su
probabilidad reportada en la encuesta, se obtiene una demora promedio de 8,2 minutos
por comida.

Estas demoras tienen un impacto directo en la decisión de compra. Entre los que consumen
almuerzos regularmente un 82.1% de los encuestados admitió haber decidido NO comprar
un almuerzo en alguna ocasión debido a la fila que había. Esta cifra de abandono es aún
más drástica en compras generales (ej. cafés, snacks), donde un 88.8% de los 224

14

https://docs.google.com/document/u/0/d/1yiRd_Kh5DvCYjkbeiY31NPEBzmgXh4Oh4PvMGbb4V94/edit

encuestados ha optado por no comprar algo por no querer o no poder esperar.

La receptividad hacia una potencial solución tecnológica es abrumadoramente positiva. Ante
la pregunta de si usarían un sistema para ver el menú, pagar con anticipación y retirar en un
horario definido, un 96.4% de los 224 encuestados respondió afirmativamente.

Las 57 respuestas abiertas de la encuesta proporcionaron un contexto cualitativo valioso,
reforzando el entusiasmo por la idea (con frases como "Hagan realidad el sueño de
muchos", "me parece una fantástica idea" y "Sería increíble"). De manera crucial, varias
respuestas identificaron con precisión el punto de dolor central: el cuello de botella no está
en la preparación de la comida, sino en el proceso de pago. Los usuarios señalaron
explícitamente que "la fila es por la demora de la caja" y que "el sistema de cobranza de la
cantina es muuuuuy lento". Adicionalmente, muchas de las funcionalidades deseadas por
los usuarios se alinean directamente con los objetivos de una solución de pedidos
anticipados. Surgieron solicitudes espontáneas para "poder consultar los menús disponibles
desde cualquier lado", "un plan mensual de pago" con beneficios, e incluso la idea de
"cargar el día anterior que va a comer" para que la cocina pueda planificar la producción.
Finalmente, las respuestas también reflejaron una insatisfacción general con aspectos del
servicio actual (precios, calidad, variedad, trato), lo que sugiere una alta disposición de los
usuarios a adoptar un nuevo sistema que mejore su experiencia general.

Por lo tanto, los datos de la encuesta proveen una validación robusta. Demuestran que el
problema de las filas es real y frecuente, que genera una pérdida de ventas tangible para la
cantina y que la comunidad universitaria está dispuesta a adoptar masivamente (96.4%) una
solución digital que resuelva estos problemas.

Podrán encontrar la encuesta en el anexo 2

2.3. Conclusión del Análisis

Las acciones llevadas a cabo en el análisis de campo confirman con solidez tanto la
viabilidad como la necesidad de una solución tecnológica. La viabilidad operativa queda
establecida por la disposición de la administración a adoptar el sistema bajo condiciones
claras. Por otro lado, la necesidad del usuario ya no es una hipótesis de "demanda latente",
sino un hecho validado cuantitativamente: los datos de 223 encuestados demuestran que el
problema de las filas es una experiencia real (impactando al 88.8% en compras generales) y
que existe una abrumadora disposición (96.4%) para adoptar una solución de pedidos
anticipados.

En conjunto, estos hallazgos justifican plenamente el desarrollo de la plataforma,
asegurando que responde a una necesidad sentida y que será bien recibida por toda la
comunidad universitaria.

3. Opciones Similares en el Mercado
El mercado actual ofrece una variedad de soluciones digitales para la gestión de pedidos y
pagos en entornos gastronómicos, cada una con sus propias características, ventajas y
desventajas. Analizar estas opciones permite comprender el panorama competitivo y el
nicho específico que el proyecto Cantina UCC busca llenar.

15

Entre las soluciones existentes, se pueden identificar principalmente tres categorías:

●​ Aplicaciones de Delivery de Terceros: Plataformas como Uber Eats, Rappi, DiDi
Food, Glovo o Just Eat son ampliamente conocidas y ofrecen un servicio de logística
de entrega externa. Su principal atractivo radica en su vasta base de clientes, lo que
permite a los restaurantes aumentar significativamente sus ventas y su alcance sin
una inversión directa en marketing. Para el cliente, estas aplicaciones brindan una
gran comodidad y conveniencia, permitiendo pedir comida desde cualquier lugar y
recibirla rápidamente. Además, la plataforma externa se encarga de la logística de
entrega, los pagos y la gestión de riesgos asociados. Sin embargo, estas ventajas
vienen acompañadas de desventajas significativas, como las altas comisiones que
cobran (que pueden ascender hasta el 30% de las ventas), lo que impacta
directamente en los márgenes de ganancia del negocio. Los restaurantes también
pueden desarrollar una dependencia y un control limitado sobre ciertos aspectos de
su operación y la calidad del servicio, ya que los retrasos o errores pueden afectar
su reputación, incluso si están fuera de su control.

●​ Software de Gestión de Restaurantes: Sistemas integrales que van más allá de la
simple toma de pedidos. Estas plataformas suelen incluir funcionalidades avanzadas
como gestión de inventarios (control de recetas, ingredientes), facturación, sistemas
de punto de venta (POS), gestión de nóminas, seguimiento del rendimiento,
programas de fidelización y análisis de ventas detallados. Algunos se especializan
en agilizar operaciones, mejorar la experiencia del cliente, optimizar el
procesamiento de pagos o gestionar pedidos omnicanal. La ventaja principal es la
centralización de todas las operaciones del restaurante en una única plataforma, lo
que mejora la eficiencia y el control. Sin embargo, su complejidad y costo inicial
pueden ser elevados, y muchas de sus funcionalidades exceden las necesidades de
una operación más simple como la de una cantina universitaria.

El Vacío que Cantina UCC Busca Llenar:

El proyecto Cantina UCC no compite directamente con las plataformas de delivery ni con los
software de gestión integral. En cambio, se posiciona como un sistema de pedidos y pagos
interno, diseñado específicamente para resolver la ineficiencia del actual proceso presencial
y manual de la Universidad Católica de Córdoba, donde los usuarios deben hacer una fila
para pagar y otra para seleccionar y retirar su comida.

La solución se enfoca en la recogida rápida de pedidos anticipados por parte de usuarios
que ya se encuentran en el campus, llenando el vacío de una solución a medida que evite
tanto las altas comisiones de los intermediarios como la complejidad innecesaria de los
sistemas de gestión integral.

La eficacia de este enfoque ha sido corroborada en el sector de servicios de alimentación.
Por ejemplo, la empresa Gallina Blanca (anexo 3) logró automatizar la recepción y gestión
de pedidos, lo que resultó en la liberación de aproximadamente 500 horas anuales en su
departamento de atención al cliente. Otro caso relevante es el de la Plataforma Integrada de
Auto Atención (PIA) para ICB Food Service (anexo 4), que al digitalizar y optimizar la
gestión de pedidos, mejoró notablemente la eficiencia operativa de la empresa.

Aunque el proyecto Cantina UCC está orientado a una escala menor, estos ejemplos
demuestran que la adopción de tecnologías para la gestión de pedidos anticipados reduce
significativamente los tiempos de espera, optimiza los recursos y mejora la satisfacción del

16

cliente. Al crear una solución interna, el proyecto elude los costos y la dependencia de
plataformas de terceros, optimiza los márgenes de ganancia y permite un control total sobre
la experiencia del usuario, respondiendo de manera inteligente a la necesidad de agilidad
en un contexto de recreos cortos y alta afluencia que las soluciones comerciales genéricas
no abordan.

La siguiente tabla compara las soluciones digitales existentes, destacando la posición única
de Cantina UCC en el caso:

Tipo de
Solución

Características
Clave

Ventajas
Generales

Desventajas
Generales

Relevancia para
Cantina UCC

App de
Delivery
Externa

Logística de
entrega, amplia
base de clientes,
marketing.

Incremento de
ventas, mayor
alcance,
comodidad
para el cliente.

Altas comisiones
(hasta 30%),
dependencia y
control limitado,
complejidad
multicanal.

No aplica
directamente;
Cantina UCC no
ofrece delivery
externo.

Software
POS
Integral

Gestión de
inventario,
facturación,
nóminas, análisis
de ventas, POS.

Centralización
de
operaciones,
control
detallado,
reportes
avanzados.

Costo inicial
elevado,
complejidad
excesiva para
una cantina
universitaria,
funcionalidades
no esenciales.

Demasiado
complejo y
costoso para la
necesidad
específica;
Cantina UCC es
más ágil.

Sistema de
pedido
Interno (a
medida)

Pedidos y pagos
anticipados,
gestión de planes
de comida, interfaz
cliente/administrad
or.

Control total
sobre la
operación,
retención de
ganancias,
experiencia de
usuario
personalizada.

Requiere
desarrollo propio
y mantenimiento,
sin logística de
delivery integrada
por defecto.

Solución a medida
que llena un vacío
al ofrecer control
total en un
entorno
institucional.

4. Tecnologías Investigadas
Para el desarrollo de la aplicación Cantina UCC, se evaluaron diversas tecnologías en las
capas de frontend, backend, despliegue y servicios en la nube, así como integración y
despliegue continuo. La selección final se basó en criterios de rendimiento, escalabilidad,
facilidad de desarrollo y adecuación al contexto del proyecto.

Frontend | UI

La capa de interfaz de usuario es crucial para la interacción del usuario y la adaptabilidad a
diferentes dispositivos. Se consideraron los siguientes frameworks y librerías:

17

Next.js:

●​ Características: Next.js es un framework de JavaScript de código abierto construido
sobre React, que facilita la creación de aplicaciones y sitios web rápidos y fáciles de
usar. Permite el renderizado del lado del servidor (SSR) y la generación de sitios
estáticos (SSG), así como la combinación con el renderizado del lado del cliente
(CSR), lo que lo convierte en una arquitectura muy potente. Ofrece enrutamiento
automático, optimización de imágenes, actualización y recarga rápida, entre otros.

●​ Ventajas: Proporciona un rendimiento muy alto y una gran eficiencia gracias a sus
capacidades de SSR y SSG, lo que se traduce en tiempos de carga reducidos y una
mejor experiencia de usuario. Es altamente amigable con el SEO, lo cual es
fundamental para la visibilidad de una aplicación pública (aunque no es relevante en
este caso). Simplifica el desarrollo web con su sistema de enrutamiento automático.
Además, incluye optimización automática de imágenes y funcionalidades de
actualización rápida.

●​ Desventajas: La curva de aprendizaje puede ser más pronunciada si el
desarrollador no tiene conocimientos previos sólidos de React. Aunque su
comunidad está creciendo, es más pequeña en comparación con la de React puro.
La implementación correcta del SSR puede ser más compleja de configurar de lo
que parece.

●​ Relevancia para Web App Responsive: Sus capacidades de renderizado híbrido y
optimización automática lo hacen ideal para construir aplicaciones web rápidas y con
buen SEO, lo cual es crucial para una interfaz de usuario pública y accesible desde
cualquier dispositivo. La optimización de imágenes y la precarga de enlaces
contribuyen a una navegación fluida y rápida en cualquier pantalla.

React.js:

●​ Características: React.js es una biblioteca de JavaScript desarrollada por
Facebook, centrada exclusivamente en la construcción de interfaces de usuario (UI).
Una de sus características clave es el uso de un DOM Virtual, una representación
ligera del DOM real, que permite actualizar solo los elementos necesarios en
pantalla, mejorando el rendimiento. Facilita la creación de Single Page Applications
(SPA) y se basa en una arquitectura de componentes reutilizables, lo que promueve
el desarrollo modular y la escalabilidad.

●​ Ventajas: Es relativamente fácil de aprender, especialmente para quienes ya
conocen JavaScript, gracias a su sintaxis intuitiva. Ofrece alta flexibilidad y un
excelente rendimiento, integrándose bien con otras librerías y respondiendo
eficazmente bajo carga. Cuenta con una comunidad de desarrolladores muy amplia
y activa, y el respaldo continuo de Facebook. Es ideal para interfaces dinámicas
donde los datos cambian frecuentemente.

●​ Desventajas: Al ser solo una biblioteca de UI, React.js requiere la integración con
otras herramientas (como React Router para enrutamiento o Redux para gestión de
estado) para construir aplicaciones complejas, lo que puede aumentar la
complejidad del proyecto. Puede haber una falta de documentación oficial unificada
y su excesiva libertad estructural puede llevar a proyectos mal gestionados si no hay

18

un patrón arquitectónico claro.

●​ Relevancia para Web App Responsive: Su eficiencia con el DOM Virtual y su
enfoque basado en componentes son excelentes para crear interfaces de usuario
interactivas y rápidas que se adaptan bien a diferentes tamaños de pantalla,
garantizando una experiencia de usuario positiva incluso con grandes cantidades de
datos dinámicos.

Vue.js:

●​ Características: Vue.js es un framework progresivo de JavaScript para la
construcción de interfaces de usuario, reconocido por su simplicidad y flexibilidad. Es
notablemente ligero, con un paquete principal comprimido que pesa solo 18 KB. Ha
adoptado los mejores conceptos de React y Angular, ofreciendo una combinación
equilibrada.

●​ Ventajas: Presenta una curva de aprendizaje más suave en comparación con React
y Angular, lo que lo hace accesible incluso para principiantes. Es fácil de entender e
integrar en proyectos existentes, permitiendo incluir componentes en aplicaciones ya
desarrolladas. Ofrece un excelente rendimiento debido a su tamaño reducido.

●​ Desventajas: Su comunidad, aunque activa, es relativamente más pequeña que la
de React o Angular, especialmente fuera de China, lo que puede limitar la
disponibilidad de plugins y librerías para requisitos muy específicos. Puede no ser la
opción ideal para proyectos de muy gran escala, aunque es utilizado por empresas
como IBM y Adobe.

●​ Relevancia para Web App Responsive: Su simplicidad y ligereza lo hacen
adecuado para desarrollar aplicaciones web interactivas y dinámicas que funcionan
bien en cualquier dispositivo, especialmente cuando se busca agilidad en el
desarrollo y una curva de aprendizaje reducida.

Angular:

●​ Características: Angular es un framework de desarrollo de aplicaciones web de una
sola página (SPA) completo y estructurado, basado en TypeScript y mantenido por
Google. A diferencia de React, que es una biblioteca, Angular proporciona una
solución integral que incluye inyección de dependencias y una arquitectura más
estructurada, con un compilador Ivy que optimiza el tamaño de las aplicaciones.

●​ Ventajas: Ofrece una solución "todo en uno" con una arquitectura robusta y
estructurada, lo que lo hace ideal para proyectos complejos y empresariales que
requieren una gran organización y escalabilidad. Cuenta con un fuerte soporte de
Google y una evolución constante con múltiples versiones que mejoran el
rendimiento y las herramientas de desarrollo.

●​ Desventajas: Su curva de aprendizaje es más empinada en comparación con React
y Vue.js, lo que puede hacerlo menos ideal para proyectos con tiempos de desarrollo
más cortos o de menor envergadura. Su enfoque más completo puede resultar en
una mayor complejidad inicial.

●​ Relevancia para Web App Responsive: Aunque es una herramienta potente para

19

construir SPAs robustas y escalables, su enfoque más estructurado y completo
puede ser excesivo para aplicaciones que priorizan la agilidad y la ligereza en el
desarrollo responsive, a menos que el proyecto esté destinado a escalar a una
complejidad empresarial significativa.

Tabla comparativa de Frameworks Frontend para Aplicaciones Web Responsive

Framework Características
Clave Ventajas Desventajas

Relevancia para
App Web
Responsive

Next.js

SSR/SSG, CSR,
enrutamiento
automático,
optimización de
imágenes.

Alto
rendimiento,
amigable con
SEO, simplifica
el desarrollo,
escalable.

Curva de
aprendizaje si
no se conoce
React,
comunidad más
pequeña.

Ideal para
aplicaciones web
rápidas y con buen
SEO, adaptable a
cualquier dispositivo.

React.js

Biblioteca UI,
DOM Virtual,
componentes
reutilizables,
SPA.

Fácil de
aprender, alta
flexibilidad,
gran
comunidad,
ideal para UI
dinámicas.

Requiere
herramientas
adicionales para
proyectos
complejos,
menos amigable
con SEO por
defecto.

Excelente para
interfaces de usuario
interactivas y
rápidas que se
adaptan bien a
diferentes tamaños
de pantalla.

Vue.js

Progresivo,
ligero (18 KB),
simplicidad,
flexibilidad,
reactividad.

Curva de
aprendizaje
suave, fácil
integración,
excelente
rendimiento.

Comunidad más
pequeña
(especialmente
fuera de China),
menos
plugins/librerías.

Adecuado para
aplicaciones web
interactivas y
dinámicas que
funcionan bien en
cualquier dispositivo,
agilidad en
desarrollo.

Angular

Framework
completo SPA,
TypeScript,
arquitectura
estructurada,
inyección de
dependencias.

Solución "todo
en uno",
robusto para
proyectos
complejos,
fuerte soporte
de Google.

Curva de
aprendizaje
empinada,
puede ser
complejo para
proyectos
pequeños.

Potente para SPAs,
pero su estructura
puede ser excesiva
si se prioriza
agilidad y ligereza
en el desarrollo
responsive.

Backend

Para el desarrollo del backend, que gestiona la lógica de negocio, los datos y las
interacciones con la base de datos y servicios externos, se consideraron varias opciones:

20

FastAPI:

●​ Características: FastAPI es un framework web moderno y rápido para construir
APIs con Python, basado en estándares abiertos como OpenAPI (anteriormente
Swagger) y JSON Schema. Se destaca por su muy alto rendimiento, comparable
con NodeJS y Go. Permite una velocidad de programación significativamente mayor
(aproximadamente un 200% a 300% más rápido) y reduce los errores inducidos por
desarrolladores en un 40%. Ofrece soporte para programación asíncrona,
autocompletado en editores y documentación interactiva automática (Swagger UI y
ReDoc).

●​ Casos de Uso para APIs de Gestión de Pedidos: Es ideal para construir APIs
robustas y eficientes que requieren validación de datos rigurosa (incluso para
objetos JSON profundamente anidados), conversión automática de datos de entrada
y salida, y una documentación clara y automática. Su alto rendimiento y soporte
asíncrono lo hacen particularmente adecuado para sistemas transaccionales con
alta demanda, como una API de gestión de pedidos, donde la integridad de los datos
y la respuesta rápida son cruciales.

Django:

●​ Características: Django es un framework robusto de Python para el desarrollo de
aplicaciones web, conocido por su filosofía de "baterías incluidas". Proporciona un
potente ORM (Object-Relational Mapper) que facilita la interacción con la base de
datos, un panel de administración integrado, serialización de datos en diferentes
formatos (como JSON y XML), y herramientas para autenticación de usuarios.
Cuenta con una excelente documentación y una gran comunidad.

●​ Casos de Uso para APIs de Gestión de Pedidos: Es adecuado para aplicaciones
complejas que requieren una base de datos bien estructurada y una gran cantidad
de funcionalidades pre-construidas. Su ORM simplifica la gestión de productos,
órdenes y usuarios en la base de datos, mientras que sus características de
autenticación y serialización son valiosas para construir APIs seguras y eficientes
para un sistema de pedidos.

Flask:

●​ Características: Flask es un micro-framework de Python, caracterizado por ser
ligero y flexible. Permite a los desarrolladores construir APIs RESTful con un alto
grado de control sobre la estructura del proyecto. Facilita la implementación de
funcionalidades como la autenticación (por ejemplo, con Flask-JWT), paginación y
ordenamiento de datos, ofreciendo una sintaxis sencilla para definir rutas con
parámetros dinámicos.

●​ Casos de Uso para APIs de Gestión de Pedidos: Es ideal para construir APIs
RESTful personalizadas y de tamaño pequeño a mediano, donde se valora la
flexibilidad y un control granular sobre cada componente. Su ligereza lo hace
adecuado para proyectos que no requieren la complejidad de framework "todo
incluido" y que buscan una implementación eficiente de endpoints específicos.

21

Node.js (Express.js):

●​ Características: Node.js es un entorno de ejecución de JavaScript de un solo hilo y
multiplataforma, basado en el motor V8 de Google Chrome, ideal para aplicaciones
de red escalables y en tiempo real. Express.js es un framework web minimalista y
flexible construido sobre Node.js, que simplifica la creación de APIs y aplicaciones
web. Ambos permiten la codificación en JavaScript tanto para el​
 frontend como para el backend, lo que puede agilizar el proceso de desarrollo.

●​ Casos de Uso para APIs de Gestión de Pedidos: Es excelente para construir APIs
REST ligeras y rápidas, especialmente en escenarios que requieren comunicación
en tiempo real (como chats o streaming de datos) o manejo intensivo de operaciones
de entrada/salida (E/S). Su modelo asíncrono y no bloqueante lo hace eficiente para
gestionar un gran número de conexiones simultáneas, lo cual es ventajoso para una
API de gestión de pedidos con potencial alta concurrencia.

Go (Gin Gonic):

●​ Características: Go es un lenguaje de programación compilado y fuertemente
tipado creado por Google, diseñado para ser simple, eficiente y confiable. Destaca
por su excelente manejo de la concurrencia a través de goroutines. Gin Gonic es
un framework web minimalista y de alto rendimiento para Go. Proporciona un
enrutador muy rápido y una API sencilla para construir servicios web, con un bajo
consumo de memoria. Al ser un lenguaje compilado, el despliegue se simplifica a un
único archivo binario.

●​ Casos de Uso para APIs de Gestión de Pedidos: Es la opción ideal para
microservicios que demandan el máximo rendimiento posible y una latencia
mínima. Su capacidad para manejar miles de conexiones concurrentes de manera
eficiente lo hace perfecto para sistemas de pedidos a gran escala o en tiempo real.
La seguridad que provee el tipado estático reduce errores en tiempo de ejecución,
algo crítico para sistemas transaccionales.

Tabla comparativa de Frameworks Backend para APIs de Gestión de Pedidos:

Framework Características
Clave Ventajas Desventajas

Casos de Uso
Relevantes
para APIs de
Gestión de
Pedidos

FastAPI

Python, alto
rendimiento,
asíncrono,
OpenAPI/JSON
Schema,
validación
automática.

Muy rápido de
programar y
ejecutar, reduce
errores,
documentación
interactiva
automática.

Ecosistema más
joven que
Django/Node.js,
menos "baterías
incluidas".

APIs de alto
rendimiento,
microservicios,
sistemas
transaccionales
con validación
de datos crítica.

Django
Python,
"baterías

Desarrollo
rápido de

Puede ser
"demasiado"

Aplicaciones
empresariales

22

incluidas",
ORM, panel
admin,
autenticación.

aplicaciones
complejas, gran
comunidad,
robusto.

para APIs
simples, menos
flexible para
microservicios
puros.

completas, APIs
con lógica de
negocio
compleja y
gestión de datos
relacionales.

Flask

Python,
micro-framewor
k, ligero,
flexible,
modular.

Gran control
sobre la
estructura, ideal
para APIs REST
personalizadas,
rápido para
proyectos
pequeños.

Requiere más
configuración
manual para
funcionalidades
comunes,
menos "baterías
incluidas".

APIs RESTful
ligeras,
microservicios
específicos,
prototipado
rápido.

Node.js
(Express.js)

JavaScript,
entorno de
ejecución V8,
asíncrono, no
bloqueante,
minimalista.

Alto rendimiento
para E/S, ideal
para tiempo
real, un solo
lenguaje
(full-stack JS),
gran ecosistema
NPM.

Curva de
aprendizaje de
asincronía,
manejo de
errores puede
ser complejo, un
solo hilo puede
ser un cuello de
botella si no se
gestiona bien.

APIs REST
rápidas y
ligeras,
aplicaciones de
chat en tiempo
real, streaming
de datos,
microservicios
con alta
concurrencia.

Go (Gin Gonic)

Go, compilado,
alto
rendimiento,
concurrencia
(goroutines),
minimalista.

Rendimiento
extremadament
e alto, bajo
consumo de
memoria,
despliegue
simplificado
(binario único),
fuertemente
tipado.

Curva de
aprendizaje de
Go puede ser
mayor,
ecosistema de
librerías menos
extenso que
Node.js/Python.

APIs de muy
alta
performance,
microservicios
críticos donde la
latencia es
clave, sistemas
con alta
concurrencia.

Despliegue y Servicios en la Nube:

La elección de una plataforma de nube es fundamental para la escalabilidad, seguridad y
disponibilidad de la aplicación. Se compararon los tres principales proveedores:

AWS (Amazon Web Services):

●​ Características: AWS es el líder del mercado en servicios en la nube, ofreciendo
una gama extremadamente amplia y madura de más de 200 servicios. Proporciona
una infraestructura altamente escalable y globalmente disponible, con 99 Zonas de
Disponibilidad en 31 regiones geográficas.

23

●​ Servicios Clave (relevantes para aplicaciones): Incluye Elastic Compute Cloud
(EC2) para capacidad informática segura y escalable, S3 para almacenamiento de
objetos, y servicios de bases de datos como RDS. También ofrece servicios de
contenedores compatibles con Docker y Kubernetes.

●​ Consideraciones: A pesar de su robustez y amplitud, AWS puede resultar costoso y
complejo para proyectos más pequeños o con presupuestos limitados, debido a su
vasta gama de servicios y modelos de precios.

Google Cloud Platform (GCP):

●​ Características: GCP ofrece una infraestructura confiable con un fuerte enfoque en
el desarrollo y despliegue de aplicaciones escalables. Una de sus ventajas
distintivas es la disponibilidad de una capa gratuita, que puede ser muy útil para
proyectos de pequeña escala o en sus fases iniciales. Además, GCP se destaca por
su compromiso con la sostenibilidad, operando con energía 100% renovable en
todos sus centros de datos.

●​ Servicios Clave (relevantes para Cantina UCC):

○​ Firestore: Una base de datos NoSQL que permite el almacenamiento y la
sincronización de datos en tiempo real, ideal para la gestión dinámica de
pedidos.

○​ Cloud Run: Un servicio que facilita el despliegue de aplicaciones en
contenedores con un modelo serverless, escalando automáticamente según
la demanda, lo que optimiza el uso de recursos y costos.

○​ Cloud Storage (Buckets): Un servicio de almacenamiento de objetos
diseñado para guardar imágenes y otros archivos estáticos de manera
eficiente y escalable.

○​ Secrets Manager: Una herramienta para la gestión segura de secretos y
credenciales, esencial para la seguridad de la aplicación.

●​ Consideraciones: Su capa gratuita y el modelo de precios competitivo lo hacen
particularmente atractivo para startups y proyectos con presupuesto limitado. Su
compromiso con la energía renovable añade un valor significativo desde una
perspectiva medioambiental.

Microsoft Azure:

●​ Características: Azure es la plataforma de nube de Microsoft, que proporciona
herramientas y servicios similares a AWS y GCP. Ocupa el segundo lugar en cuota
de mercado y es conocida por su fuerte integración con soluciones empresariales y
herramientas de desarrollo de Microsoft.

●​ Servicios Clave (relevantes para aplicaciones): Ofrece Máquinas Virtuales como
su principal servicio de computación, Almacenamiento Blob para objetos, y Azure
Synapse Analytics para lagos de datos y almacenes. También incluye servicios de
computación sin servidor.

●​ Consideraciones: Aunque potente, su interfaz puede ser percibida como más difícil

24

de usar para nuevos usuarios. Ofrece precios competitivos de pago por uso y
flexibilidad para cancelar planes en cualquier momento.

Tabla comparativa de Plataformas de Nube para Despliegue de Aplicaciones:

Plataforma Cuota de
Mercado

Servicios
Clave
Relevantes
(Ejemplos)

Ventajas Desventaja
s

Consideracio
nes
Específicas

AWS
Líder
(31%)

EC2
(computación),
S3
(almacenamient
o), RDS (bases
de datos),
servicios de
contenedores.

Amplitud de
servicios,
madurez,
escalabilidad
global, gran
ecosistema.

Puede ser
costoso y
complejo
para
proyectos
pequeños,
curva de
aprendizaje.

Ideal para
sistemas
complejos y
empresariales,
amplia oferta
de servicios.

GCP
Tercero
(10%)

Firestore
(NoSQL), Cloud
Run
(serverless),
Cloud Storage
(objetos),
Secrets
Manager.

Capa gratuita,
compromiso
con energía
100%
renovable,
precios
competitivos,
servicios
serverless.

Menor
cuota de
mercado
que
AWS/Azure,
ecosistema
en
crecimiento.

Muy útil para
startups y
proyectos con
presupuesto
limitado, fuerte
enfoque en
sostenibilidad.

Microsoft
Azure

Segundo
(23%)

Máquinas
Virtuales
(computación),
Blob Storage
(objetos),
Synapse
Analytics (data
lake), servicios
sin servidor.

Fuerte
integración
con Microsoft,
soporte
empresarial,
amplia gama
de servicios.

Interfaz
puede ser
difícil para
nuevos
usuarios,
percepción
de mayor
complejidad
.

Preferido por
empresas con
ecosistemas
Microsoft,
precios
competitivos
de pago por
uso.

Herramientas de Integración y Despliegue Continuo (CI/CD)

Jenkins

Características: Jenkins es una de las herramientas más veteranas y flexibles para CI/CD.
Permite automatizar el ciclo de vida completo del software (construcción, pruebas,
despliegue). Tiene un ecosistema muy amplio de plugins, lo que lo hace extremadamente
configurable.

Servicios Clave / Capacidades:

25

●​ Pipelines altamente personalizables.

●​ Amplia integración con otras herramientas (Docker, Kubernetes, GitHub, Slack, etc.).​
Despliegue en prácticamente cualquier infraestructura (on-premise o cloud).

Consideraciones:

●​ Requiere instalación y mantenimiento propios (no es SaaS).

●​ La curva de aprendizaje puede ser elevada.

●​ Ideal para equipos con experiencia técnica que buscan control total.

GitHub Actions

Características: GitHub Actions es la solución de CI/CD nativa de GitHub. Permite definir
flujos de trabajo en YAML que se disparan en función de eventos (push, pull request,
releases, etc.).

Servicios Clave / Capacidades:

●​ Integración nativa con repositorios de GitHub.

●​ Amplio marketplace de acciones reutilizables.

●​ Ejecución en runners de GitHub o runners propios.

●​ Soporte directo para despliegue en plataformas como AWS, GCP, Azure y Vercel.

Consideraciones:

●​ Más sencillo de configurar que Jenkins.

●​ Escalable según el tamaño del proyecto.

●​ Ideal para startups, proyectos open source y equipos que ya trabajan con GitHub.

GitLab CI/CD

Características: GitLab CI/CD viene integrado en GitLab, lo que lo convierte en una
solución todo en uno para repositorios, issues, CI/CD y monitoreo.

Servicios Clave / Capacidades:

●​ Pipelines definidos en archivos YAML.

●​ Soporte nativo para contenedores y Kubernetes.

●​ Integración con gestión de proyectos y control de versiones.

●​ Permite self-hosted runners o usar los de GitLab.

Consideraciones:

26

●​ Ideal si ya se trabaja en GitLab (flujo completo en una sola plataforma).

●​ Puede ser más cerrado en comparación con Jenkins en cuanto a integraciones
externas.

●​ Su comunidad y ecosistema son más pequeños que los de GitHub.

Tabla resumen

Plataformas de Pago en el Ecosistema Argentino (Opciones para
integrar pagos online)
Para tomar una decisión informada, se analizaron las principales opciones disponibles en
el mercado argentino. La siguiente evaluación se basa en criterios críticos para un
proyecto en su fase inicial y de crecimiento, como la estructura de costos, la liquidez, la
oferta de pagos y la facilidad de implementación.

Criterios de Evaluación

La comparación se estructura en torno a cinco métricas fundamentales:

1.​ Modelo de Comisiones: Se analiza la estructura de costos, que generalmente
incluye un porcentaje variable por transacción, a veces un costo fijo, y el Impuesto al

27

Herramienta Tipo / Modelo Ventajas Desventajas Consideraciones Específicas

Jenkins Open source,
self-hosted

Extremadamen
te flexible,
ecosistema
maduro de
plugins,
soporta
cualquier
infraestructura.

Configuració
n inicial
compleja,
mantenimien
to propio,
curva de
aprendizaje
alta.

Ideal para equipos
técnicos que requieren
control total y entornos
complejos.

GitHub
Actions

SaaS
integrado en
GitHub

Configuración
sencilla,
integración
nativa con
GitHub,
marketplace de
acciones,
escalabilidad.

Dependenci
a de GitHub,
runners
gratuitos
limitados.

Muy útil para proyectos en
GitHub, startups y open
source.

GitLab
CI/CD

SaaS /
self-hosted
(incluido en
GitLab)

Flujo completo
en una sola
plataforma
(repos, issues,
CI/CD),
integración
nativa con
Kubernetes.

Menor
ecosistema
que GitHub,
menos
flexible que
Jenkins.

Ideal para equipos que ya
trabajan en GitLab y
buscan una solución todo
en uno.

Valor Agregado (IVA). Las comisiones pueden variar significativamente según el
método de pago y el plazo de acreditación de los fondos.

2.​ Plazos de Acreditación de Fondos: Este factor es vital para la gestión del flujo de
caja de un negocio. Los plazos pueden ir desde la acreditación inmediata, con una
comisión más alta, hasta 30 días o más para obtener una tasa más competitiva.

3.​ Métodos de Pago Aceptados: Se evalúa la amplitud de opciones que la pasarela
ofrece al cliente final, incluyendo tarjetas de crédito y débito y saldo de billeteras
digitales.

4.​ Facilidad de Integración: Se considera la disponibilidad y calidad de la
documentación técnica, APIs, y Kits de Desarrollo de Software (SDKs),lo cual impacta
directamente en los costos y tiempos de desarrollo.

5.​ Mercado Objetivo y Soporte: Cada pasarela suele estar optimizada para un
segmento de negocio específico, desde pequeños emprendedores hasta grandes
corporaciones. La calidad y disponibilidad del soporte técnico es también un
diferenciador clave para resolver incidencias de manera eficiente.

Matriz Comparativa de Pasarelas de Pago en Argentina

28

Característica Mercado
Pago PayU Ualá Bis Mobbex Payway

(Prisma)

Comisiones
(aprox.)

Variable:
1.99% a
5.99% + IVA
(depende
del plazo)

3.49% + fijo
+ IVA

4.4% + IVA
(crédito),
2.9% + IVA
(débito)

~4% + IVA
(plan
simple)

Negociación
directa con
bancos +
fee de la
pasarela

Plazos
Acreditación

Inmediato,
14 o 30 días

Variable,
con retiros
mensuales
limitados

Inmediato 5-12 días
hábiles

Directo en
cuenta
bancaria
(rápido)

Métodos de
Pago

Todos
(Tarjetas,
Efectivo,
QR, Saldo
en cuenta)

Amplia
variedad,
foco
regional

Tarjetas,
Link de
pago

Tarjetas,
Transferenci
as, Cripto
(vía
Binance)

Tarjetas,
QR, Débito
automático

Integración

Excelente
(APIs,
SDKs,
Plugins)

Buena
(APIs,
SDKs)

Sencilla,
foco en links
de pago

Buena, foco
en
e-commerce
y
recurrencia

Compleja,
requiere
desarrollo a
medida y
convenios
bancarios

Infraestructura para la Comunicación Transaccional por Correo
Electrónico

Los correos electrónicos transaccionales son mensajes automatizados que se envían a un
usuario individual en respuesta a una acción específica realizada por este en una
plataforma o aplicación. Ejemplos comunes incluyen confirmaciones de compra,
notificaciones de envío, correos para restablecer contraseñas, envío de facturas o
confirmaciones de registro. A diferencia del email marketing, que se envía a listas de
suscriptores con fines promocionales, los correos transaccionales son funcionales y
esperados por el usuario.

Debido a su naturaleza, estos correos tienen tasas de apertura y de clics (CTR)
extremadamente altas en comparación con las campañas de marketing. Son un punto de
contacto fundamental en el ciclo de vida del cliente y desempeñan un papel crucial en la
construcción de confianza. Un correo de confirmación de pedido que llega de forma
instantánea y con un formato profesional reafirma al cliente que su compra fue exitosa y que
la empresa es fiable.

Impacto en la Operativa

Una gestión deficiente de los correos transaccionales puede tener consecuencias negativas
severas. Si un correo de confirmación no llega, llega con retraso o es filtrado a la carpeta de
spam, el usuario puede pensar que su transacción falló, lo que genera ansiedad y
desconfianza. Esto, a su vez, provoca un aumento en las consultas al equipo de soporte al
cliente, incrementando la carga de trabajo y los costos operativos. Por lo tanto, garantizar
una alta tasa de entregabilidad (la capacidad de que los correos lleguen a la bandeja de
entrada) es una prioridad técnica y de negocio.

Por esto, se evaluaron diferentes enfoques para el envío de correos, desde servicios de API
especializados hasta una implementación propia utilizando la librería smtplib de Python con
un servidor de Gmail.

Característica
Servicios Dedicados
(SendGrid, Mailgun,
Resend)

Amazon SES
(Simple Email
Service)

Desarrollo Propio
(Gmail + smtplib)

29

Mercado
Objetivo

Emprended
ores a
grandes
empresas

Pymes y
corporacion
es con
operación
en LatAm

Emprended
ores y
pequeños
comercios

Pymes y
negocios
con pagos
recurrentes

Grandes
empresas
con alto
volumen

Soporte

24/7
(aunque a
veces
genérico)

Estándar Bueno para
su nicho

Destacado
por su
atención
personaliza
da

Soporte
corporativo

Modelo de
Precios

Planes escalonados
con niveles gratuitos
funcionales para
iniciar.

Modelo de pago por
uso,
extremadamente
económico a gran
escala ($0.10 usd
por 1,000 correos).

"Gratis" dentro de los
límites de la cuenta
de Gmail.

Facilidad de
Uso

Muy alta. Interfaces
amigables, excelente
documentación y
SDKs para múltiples
lenguajes que
simplifican la
integración.

Baja. Interfaz
técnica y compleja,
requiere
conocimientos del
ecosistema AWS
para una
configuración
correcta.

Engañosamente
simple para un
prototipo, pero muy
complejo de gestionar
y escalar en un
entorno de
producción.

Entregabilida
d y Analíticas

Excelente. Ofrecen
herramientas
avanzadas para
maximizar la
entregabilidad,
gestionar la
reputación del
remitente y analizar
métricas detalladas
(aperturas, clics,
rebotes).

Muy alta, pero
depende de una
configuración
manual correcta de
protocolos como
SPF y DKIM. Las
analíticas son
básicas y requieren
integración con
otros servicios de
AWS.

Pobre. No ofrece
analíticas. La
entregabilidad
depende enteramente
de la reputación de
una cuenta personal,
con alto riesgo de ser
marcada como spam.

Escalabilidad
y Límites

Alta. Diseñados para
manejar grandes
volúmenes de envío
sin límites diarios
restrictivos en los
planes de pago.

Muy alta.
Construido sobre la
infraestructura de
AWS para escalar a
millones de correos.

Muy baja. Límites de
envío diarios estrictos
(500 para cuentas
gratuitas, 2,000 para
Workspace) que
pueden bloquear la
cuenta por hasta 24
horas si se exceden.

30

Ideal Para...

Proyectos que buscan
una solución robusta,
fácil de implementar y
con analíticas
potentes desde el
inicio.

Proyectos que
priorizan el costo
por encima de todo
y ya operan dentro
del ecosistema de
AWS.

Pruebas, prototipos o
proyectos personales
de muy bajo volumen.
No es una opción
viable para una
aplicación en
producción.

Estrategias de Pruebas del Sistema

Para garantizar la calidad, fiabilidad y correcto funcionamiento de la aplicación, es
fundamental implementar una estrategia de pruebas multifacética que abarque diferentes
niveles del sistema. Esta estrategia se centra en la detección temprana de errores, la
validación de la lógica de negocio y la confirmación de que el software cumple con las
expectativas de los usuarios finales. Las principales etapas de prueba incluyen las pruebas
unitarias, las pruebas de integración y las pruebas de aceptación de usuario (UAT).

Pruebas Unitarias

Las pruebas unitarias constituyen la primera línea de defensa contra los errores de
software. Su objetivo es verificar el correcto funcionamiento de las unidades de código más
pequeñas y aisladas, como funciones, métodos o componentes individuales.

●​ Objetivo: Asegurar que cada pieza del código se comporte como se espera de
forma independiente. Por ejemplo, se probaría una función que calcula el total de un
pedido, una que valida el formato de un correo electrónico o un componente de la
interfaz que muestra el precio de un producto.

●​ Metodología: Estas pruebas son automatizadas y se ejecutan frecuentemente
durante el desarrollo. Al aislar los componentes, se utilizan "mocks" o dobles de
prueba para simular dependencias externas (como bases de datos o APIs de
terceros), permitiendo que la prueba se centre exclusivamente en la lógica de la
unidad bajo análisis.

●​ Beneficios:

○​ Detección Temprana de Errores: Identifican problemas en las etapas
iniciales, reduciendo el costo de su corrección.

○​ Facilitan la Refactorización: Proporcionan una red de seguridad para
modificar y mejorar el código sin introducir regresiones.

○​ Documentación Viva: Sirven como una forma de documentación técnica del
comportamiento esperado de cada unidad.

Pruebas de Integración

Una vez que las unidades individuales han sido validadas, las pruebas de integración se

31

encargan de verificar que estas interactúan correctamente entre sí.

●​ Objetivo: Detectar fallos en las interfaces y en la comunicación entre diferentes
módulos del sistema. En el contexto de Cantina UCC, un ejemplo clave sería probar
el flujo completo de un pedido: desde que se añade un producto al carrito (frontend),
se procesa el pago (API externa) y se registra el pedido en la base de datos
(backend).

●​ Metodología: Implican la combinación de varios módulos para simular un flujo de
trabajo real, interactuando con servicios reales o sus versiones de prueba (ej. base
de datos de prueba, entorno "sandbox" de una pasarela de pago).

●​ Beneficios:

○​ Validación de Flujos de Datos: Aseguran que los datos se transmiten
correctamente entre componentes.

○​ Detección de Errores de Interfaz: Identifican problemas de comunicación
entre módulos.

○​ Confianza en la Arquitectura: Verifican que los componentes colaboran de
manera efectiva.

Pruebas de Aceptación de Usuario (UAT)

En este tipo de pruebas el software es evaluado por los usuarios finales para confirmar
que cumple con sus necesidades y con los requisitos del negocio.

●​ Objetivo: Validar que el sistema es "apto para su propósito" desde la perspectiva del
usuario. No se centra en encontrar errores de código, sino en verificar que la
aplicación resuelve el problema original de una manera intuitiva y eficiente.

●​ Metodología: Un grupo representativo de usuarios finales realiza tareas específicas
en un entorno similar al de producción para recopilar feedback sobre la usabilidad y
satisfacción general.

●​ Beneficios:

○​ Validación del Negocio: Confirma que el software entrega el valor esperado.

○​ Garantía de Usabilidad: Asegura que la aplicación es fácil de usar para su
público objetivo.

○​ Reducción de Riesgos: Minimiza el riesgo de que el producto sea
rechazado por los usuarios tras su lanzamiento.

Pruebas Funcionales

Este tipo de prueba valida los requisitos del software desde una perspectiva funcional,
simulando escenarios de uso reales para verificar que el sistema se comporta como se
espera. Abarcan flujos de trabajo completos de principio a fin (End-to-End) y, a diferencia de
las UAT, son ejecutadas típicamente por el equipo de desarrollo o de calidad (QA).

●​ Objetivo: Validar que el sistema cumple con los requisitos funcionales descritos en

32

las especificaciones. Se centra en probar los flujos de trabajo completos para
asegurar que cada funcionalidad opera correctamente desde la perspectiva del caso
de uso.

●​ Metodología: Simulación de escenarios de uso reales, ejecutados por el equipo de
desarrollo o calidad (QA). No se enfoca en la usabilidad o satisfacción del usuario
final, sino en el cumplimiento estricto de los requerimientos funcionales.

●​ Beneficios:

○​ Garantía de Calidad: Asegura que el software entregado cumple con las
especificaciones funcionales.

○​ Validación de Flujos Críticos: Verifica que los procesos de negocio más
importantes funcionan correctamente de principio a fin.

○​ Reducción de Errores Post-Lanzamiento: Detecta fallos funcionales antes
de que el software llegue a los usuarios finales.

33

PROPUESTA DE SOLUCIÓN
1 Alcance Funcional
Para establecer los requerimientos del sistema, se definirá mediante historias de usuario.
Las historias de usuario permitirán identificar las funcionalidades clave del sistema.

Este enfoque asegura que el equipo pueda comprender las expectativas del usuario final,
priorizando las características más importantes y evitando desviaciones o tareas no
esenciales. Las historias de usuario también permitirán una planificación ágil y una
evaluación continua del progreso del proyecto.

Historias de usuario:

Usuarios Invitados (sin cuenta)

1.​ Como usuario invitado, quiero explorar el catálogo de productos.

2.​ Como usuario invitado, quiero poder agregar productos al carrito, para poder ir
armando mi pedido.

Usuario Registrado (extiende usuario invitado)

3.​ Como usuario registrado, quiero poder iniciar sesión utilizando mi correo electrónico
o cuenta de Google, para acceder a mi perfil y personalizar mi experiencia.

4.​ Como usuario registrado quiero poder realizar una compra y poner un horario para
retirarlo, para una mejor experiencia y poder planificar mis pedidos.

5.​ Como usuario registrado, quiero recibir una confirmación por correo electrónico al
finalizar una compra, con las instrucciones para retirar el pedido y la información de
la transacción.

6.​ Como usuario registrado quiero poder comprar planes de comida por varios días en
la cantina, para recibir descuentos.

7.​ Como usuario registrado quiero poder aplicar un plan de comida en una compra.

8.​ Como usuario registrado, quiero ver el historial de mis compras anteriores, para
poder ver la información de todos mis pedidos y mis planes de comida.

Administradores de la cantina:

9.​ Como administrador de la cantina, quiero poder agregar, editar o eliminar productos
desde una interfaz de administración, para mantener actualizado el catálogo de la
cantina que ven los usuarios.

10.​Como administrador de la cantina quiero poder visualizar los pedidos realizados por
los usuarios para poder ver su estado y administrarlos.

34

11.​Como administrador de la cantina quiero poder obtener un informe diario y mensual
de las compras realizadas en dichos periodos y los montos de dinero para poder
hacer un registro de movimientos.

12.​Como administrador quiero poder imprimir los tickets de los pedidos que me van
llegando para poder procesarlos en la cocina.

13.​Como administrador quiero tener una pantalla con las órdenes que son para la
cocina para evitar tener que imprimir el ticket

14.​Como administrador quiero poder crear y gestionar los planes de comida para que
los usuarios puedan comprarlos

Lo que está incluido en el Alcance Funcional:
●​ Integración con Mercado Pago: Se integrará la plataforma de pagos Mercado Pago

para procesar las compras de los usuarios y permitir pagos seguros.

●​ Notificaciones por correo electrónico: Los usuarios recibirán notificaciones
automáticas relacionadas con el estado de sus pedidos y transacciones.

Lo que queda fuera del Alcance Funcional:
●​ Gestión de inventarios físicos: El sistema no gestionará el inventario físico de la

cantina, solo el catálogo de productos dentro de la plataforma.

●​ Aplicación móvil: Actualmente, solo se desarrollará una versión web de la aplicación;
no se considera una aplicación móvil en esta ni en ninguna fase del proyecto.

●​ Integración con otros métodos de pago: En esta fase, el sistema se integrará
únicamente con Mercadopago. La plataforma incluye la opción de pagar con tarjetas
de crédito o débito fuera de la aplicación (por lo que no es requisito excluyente tener
una cuenta de Mercadopago) pero todos los pagos serán manejados únicamente a
través de este proveedor. Otros proveedores de pago no están contemplados en
este alcance.

●​ Funciones de análisis avanzado: El sistema no incluirá análisis o reportes complejos
sobre ventas, productos o usuarios en esta fase inicial.

2 Diseño
Pantallas

En el frontend de la cantina (para clientes)

1.​ Menú de la cantina: Página principal, donde el cliente puede navegar por el catálogo
de productos, buscar por nombre o descripción y filtrar por categoría. Los productos
pueden añadirse al carrito.

35

2.​ Carrito: Página que muestra todos los productos añadidos al carrito, permitiendo
modificar la cantidad de unidades o eliminar productos, permite la selección de un
horario para el retiro y también genera el link para comprar a través de Mercadopago

3.​ Mis ordenes: Página donde se muestran todas las compras realizadas, con la opción
de filtrar por fecha y estado de la orden.

4.​ Cuenta: Página que muestra la información de la cuenta y permite cerrar sesión.

5.​ Auth: pagina donde iniciar sesión o crear una cuenta.

6.​ Impacto RSU: Cuenta informativa sobre la Responsabilidad Social Universitaria

7.​ Gracias x tu compra: página informativa a la que redirige Mercadopago cuando el
pago fue exitoso

8.​ Planes de comida: pagina donde podes armar un plan de comida y comprar el
mismo

9.​ Mis planes de comida: Pagina donde visualizas los planes de comida activos tuyos

En el frontend de administración (para los administradores de la cantina)

1.​ Productos: Página que muestra una tabla con todos los productos, permitiendo
buscar por nombre o descripción y filtrar en orden ascendente o descendente por
distintas categorías.

2.​ Agregar Producto: Página con el formulario para agregar un nuevo producto.

3.​ Editar Producto: Página con un formulario para editar la información de un producto.

4.​ Órdenes: Página donde se pueden ver todas las órdenes recibidas, filtrar por fecha,
por estado y buscar por id de la orden.

5.​ Resúmenes: Página donde se pueden visualizar los resumes de ventas diarios y
mensuales.

6.​ Cocina: Página donde se visualizan las órdenes que son enviadas a la cocina para
procesar allí.

7.​ Planes de comida: pagina para crear y administrar los plane de comida que se
muestran en la cantina

8.​ Log in: Página donde iniciar sesión.

Diagramas

En base de datos tendremos 8 tablas:

1.​ Items (productos):

La tabla Items representa el catálogo de productos o artículos disponibles en el
sistema. Cada instancia de Items corresponde a un producto único que puede ser ofrecido
para la venta o formar parte de una orden.

36

Esta entidad almacena todas las características esenciales que definen un producto,
permitiendo su identificación, descripción, gestión de inventario y asociación con otros
elementos del negocio.

2.​ PreOrder:

La tabla PreOrdenes actúa como un repositorio temporal para la información de una orden
antes de que se complete el proceso de pago. Su propósito principal es almacenar todos los
detalles necesarios de una compra mientras esta se encuentra en un estado preliminar o
pendiente de confirmación.

Una vez que el pago de la orden es exitosamente confirmado, los datos contenidos en la
PreOrden se utilizan para generar un objeto Orden definitivo. Este nuevo objeto Orden se
almacena de forma persistente, y consecuentemente, la PreOrden correspondiente es
eliminada de la base de datos. Esto asegura que PreOrdenes mantenga únicamente
registros activos de transacciones aún no finalizadas. La tabla PreOrdenes se somete a una
limpieza diaria nocturna, eliminando las pre-órdenes que no fueron pagadas en el día.

Estructura y Composición de PreOrdenes:

Es fundamental comprender que PreOrdenes integra la información de los conceptos Cart
(Carrito) y Line (Línea de Artículo) directamente dentro de su estructura. Cart y Line no son
tablas separadas en la base de datos, sino que representan la organización interna de los
datos que PreOrdenes contiene.

Dentro de cada PreOrden, se almacena un Cart que, a su vez, contiene una colección de
Lines. Cada Line detalla un artículo específico incluido en la pre-orden.

Particularidad del Atributo item en Line:

Una característica clave del atributo item dentro de la estructura Line es que no almacena
un item_id (identificador de artículo) sino una "fotografía" o una copia completa del artículo
en el momento de la pre-orden.

Esta aproximación es crucial por las siguientes razones:

●​ Preservación de la Integridad: Si el artículo original (en la tabla items) fuera
modificado o eliminado después de que se creó la PreOrden, la PreOrden (y

37

posteriormente la Orden final) mantendría una referencia precisa y completa del
artículo tal como era cuando se compró.

●​ Independencia de Cambios Futuros: Evita la pérdida de información o referencias
rotas que podrían ocurrir si la PreOrden dependiera de un item_id que podría dejar
de existir o apuntar a datos modificados Por eso permite tener un registro exacto de
las características del producto (precio, descripción, etc.) en el momento de la
compra, lo cual es vital para fines de auditoría, devoluciones o seguimiento.

3.​ Orders (órdenes):

La tabla Orders representa el registro persistente y definitivo de las órdenes una vez que el
pago ha sido exitosamente confirmado. A diferencia de PreOrders, que es un estado
transitorio, cada entrada en Orders es una transacción de compra completada y validada.

38

4.​ DayOrderCounter:

Es una tabla o entidad diseñada para llevar un contador diario de órdenes. Su objetivo
principal es generar números de orden secuenciales para cada día, facilitando así un control
organizado de las órdenes para una fecha específica.

5.​ FoodPlans:​

Se encarga de definir y administrar los diferentes planes de comida que la Cantina podria
ofrecer a los clientes.

39

6.​ DailySummaries:

Está diseñada para almacenar y presentar un consolidado de la actividad de ventas de cada
día. Su propósito es ofrecer una vista agregada y rápida del rendimiento económico diario
del negocio, sin la necesidad de consultar y procesar la gran cantidad de órdenes
individuales. Contiene la información resumida de los artículos vendidos y el ingreso total
generado en una jornada específica.

Esta tabla se identifica unívocamente por un id que corresponde a la fecha del resumen en
formato "aaaa-mm-dd". Contiene la información resumida de los artículos vendidos y el
ingreso total generado en una jornada específica.

SummaryItem es un componente anidado dentro de DailySummaries, no una tabla en sí.
Su función es detallar la información agregada de un artículo específico dentro de un
resumen diario. En lugar de mostrar cada instancia individual de un artículo vendido,
SummaryItem consolida la cantidad total de unidades de ese artículo que se vendieron y el
ingreso total que generaron. Además, puede indicar cómo esas ventas se distribuyeron
entre los diferentes planes de comida, si es aplicable.

40

7.​ MonthlySummaries:

Cumple una función idéntica a DailySummaries, pero a una escala temporal diferente:
consolida la actividad de ventas a nivel mensual.

Su principal distinción es el id, que identifica cada resumen por el mes en formato
"aaaa-mm". Al igual que los resúmenes diarios, contiene la información agregada de
SummaryItems y el ingreso total, pero agrupando los datos de todo un mes.

8.​ OrdersForPlans:

Se dedica a registrar las compras o suscripciones de los planes de comida (FoodPlans) por
parte de los usuarios. Representa la instancia en que un cliente adquiere un determinado
FoodPlan, detallando no solo qué plan compró, sino también cuántas unidades o qué
cantidad de ese plan adquirió.

Esta tabla es crucial para gestionar el consumo y la vigencia de los planes que los usuarios
han prepagado o suscrito. Permite al sistema hacer un seguimiento de cuánto de un plan ha
sido utilizado y cuánto queda disponible.

Su id combina el identificador del plan y el email del usuario, asegurando una referencia
única para cada suscripción de plan.

41

Diagrama de estado de los pedidos:

NOTA: El proceso de gestión de órdenes seguirá un flujo estructurado y solo se aplicará a
órdenes que han sido pagadas. Tanto la cantina como los usuarios solo pueden ver las
órdenes que han sido confirmadas mediante pago; si una orden no ha sido pagada, no se
visualizará en ninguna de las interfaces.

42

Tecnologías elegidas

Frontend: Next.js

Next.js es un framework de React que permite la creación de aplicaciones web con
renderizado del lado del servidor y generación de sitios estáticos. Sus principales
características incluyen:

●​ Renderizado Híbrido: Combina el renderizado del lado del servidor y la generación
de sitios estáticos, mejorando el rendimiento y la experiencia del usuario.

●​ Optimización Automática: Realiza división de código y carga optimizada, reduciendo
los tiempos de carga.

Backend: FastAPI con Python

FastAPI es un framework web moderno y rápido para la construcción de APIs con Python,
basado en estándares como OpenAPI y JSON Schema. Sus ventajas son:

●​ Alto Rendimiento: Diseñado para ser rápido y eficiente en la construcción de APIs.

●​ Facilidad de Uso: Ofrece una experiencia de desarrollo sencilla y documentación
automática.

●​ Soporte para Asincronía: Permite la programación asíncrona, mejorando la
escalabilidad.

Despliegue y Servicios en la Nube: Google Cloud Platform (GCP)

La elección de GCP para el despliegue de Cantina UCC no fue solo una decisión técnica,
sino una estrategia multifacética que equilibra la escalabilidad y el rendimiento con la
viabilidad económica. La disponibilidad de una capa gratuita en GCP fue un factor decisivo
para reducir la barrera de entrada y los costos iniciales del proyecto.

Los servicios específicos incluyen:

●​ Firestore: Base de datos NoSQL que permite el almacenamiento y sincronización de
datos en tiempo real.

●​ Cloud Run: Servicio que facilita el despliegue de aplicaciones en contenedores,
escalando automáticamente según la demanda.

●​ Buckets: Almacenamiento de objetos para guardar imágenes y otros archivos
estáticos.

●​ Secrets Manager: Gestión segura de credenciales y secretos necesarios para la
aplicación.

Esta elección de servicios permite una infraestructura escalable y segura, adaptándose a
las necesidades del proyecto.

43

Integración y Despliegue Continuo: GitHub Actions y Docker Hub

Para garantizar un flujo de trabajo eficiente y automatizado, se implementarán las siguientes
herramientas:

●​ GitHub Actions: Automatiza los procesos de construcción, prueba y despliegue de la
aplicación, asegurando que cada cambio en el código se refleje de manera
consistente en el entorno de producción.

●​ Docker Hub: Almacena y gestiona las imágenes de contenedores utilizadas en el
despliegue, facilitando la portabilidad y escalabilidad de la aplicación.

Plataforma de pagos

Tras el análisis comparativo, se concluyó que Mercado Pago es la opción estratégica más
sólida para el proyecto. Esta elección no se basa en ser la alternativa de menor costo por
transacción, sino en su capacidad para maximizar la probabilidad de éxito comercial a
través de un conjunto de ventajas cualitativas y cuantitativas.

La decisión de qué pasarela de pago utilizar trasciende un simple cálculo de comisiones; es
una decisión fundamental de experiencia de usuario y marketing. Aunque algunas
alternativas como Ualá Bis o Mobbex pueden ofrecer tasas marginalmente inferiores en
ciertos escenarios, Mercado Pago ostenta una posición de dominio y reconocimiento en el
mercado argentino que ninguna otra plataforma puede igualar.

Este reconocimiento se traduce directamente en una mayor tasa de conversión. Un usuario
que llega al checkout y se encuentra con la opción de pagar a través de Mercado Pago se
siente en un entorno familiar y seguro. La plataforma ofrece protección tanto al comprador
como al vendedor, un factor que disminuye la ansiedad asociada a las compras en línea.

Optar por una pasarela menos conocida para ahorrar una fracción porcentual en comisiones
podría resultar en un costo mucho mayor derivado del aumento en la tasa de abandono de
carritos. Por lo tanto, la comisión de Mercado Pago puede ser interpretada no como un
gasto, sino como una inversión estratégica en la confianza del cliente y, en última instancia,
en la maximización de las ventas.

Además, Mercadopago resuelve de manera eficiente uno de los mayores desafíos del
e-commerce en Argentina: la diversidad de métodos de pago. Con una sola integración, el
proyecto puede ofrecer a sus clientes la posibilidad de pagar con tarjetas de crédito
(incluyendo planes de cuotas), tarjetas de débito, redes de pago en efectivo
(Rapipago/Pago Fácil), transferencias bancarias y, de manera crucial, el saldo disponible en
la cuenta de Mercado Pago, una de las billeteras virtuales más utilizadas en el país. Ofrecer
esta gama completa de opciones desde el primer día sin la necesidad de gestionar múltiples
integraciones y contratos es una ventaja operativa y competitiva decisiva.

Correos transaccionales

Para la infraestructura de envío de emails transaccionales se decidió implementar Amazon
Simple Email Service (SES) como proveedor de envío de correos. La elección se
fundamenta en varias razones:

1.​ Costo altamente competitivo: SES opera bajo un modelo de pago por uso, con un
precio de $0.10 USD por cada 1,000 correos enviados, lo cual lo hace

44

extremadamente económico a gran escala, especialmente en comparación con
proveedores dedicados como SendGrid o Mailgun.​

2.​ Escalabilidad y confiabilidad: Al estar construido sobre la infraestructura de AWS,
SES puede manejar millones de correos con una tasa de disponibilidad muy alta, sin
limitaciones diarias restrictivas. Esto lo convierte en una solución preparada para el
crecimiento del proyecto.​

3.​ Entregabilidad: Aunque requiere una correcta configuración de protocolos como
SPF, DKIM y DMARC, una vez realizada, la tasa de entregabilidad es muy alta,
minimizando la posibilidad de que los mensajes lleguen a la carpeta de spam.​

4.​ Integración en el ecosistema AWS: El proyecto utilizara Google Cloud para backend
y despliegues, pero optar por SES permite mantener la flexibilidad de trabajar con la
infraestructura de AWS para un servicio tan crítico como la mensajería.

Para garantizar la profesionalidad y la entregabilidad de los correos, se adquirió el dominio
cantinaucc.com a través de Namecheap (por $15.000 por todo un año). Posteriormente,
se realizó la configuración necesaria en los DNS records para habilitar el envío de correos
desde este dominio mediante SES

Con esta configuración, los correos transaccionales enviados desde …@cantinaucc.com
tienen una altísima probabilidad de llegar correctamente a la bandeja de entrada de los
usuarios, evitando problemas de spam o falsos positivos.

Además de servir como remitente confiable para la mensajería transaccional, el dominio
cantinaucc.com se utilizará para la parte web del proyecto asi el dominio permitirá
direccionar a los usuarios hacia las dos interfaces de la aplicación (la de clientes
(cantinaucc.com) y la de administradores (admin.cantinaucc.com)), asegurando una
experiencia de navegación profesional y unificada bajo una misma identidad digital.

Algunas aclaraciones

La elección de las distintas tecnologías e integraciones se basa también en la experiencia y
conocimientos del equipo de desarrollo. Estas tecnologías ofrecen una combinación de
rendimiento, escalabilidad y facilidad de uso que se ajusta a los objetivos del proyecto.
Aunque existen otras alternativas, la familiaridad del equipo con las tecnologías elegidas
reduce los tiempos de desarrollo y mejora la calidad del producto final.

Arquitectura

La arquitectura de la aplicación Cantina UCC se basa en un modelo cliente-servidor con
un enfoque en servicios en la nube, optimizando el rendimiento, escalabilidad y seguridad.
La aplicación está diseñada para ser modular y escalable, con una separación clara entre
los distintos componentes que interactúan entre sí.

1. Arquitectura General

El sistema está organizado en componentes independientes que interactúan entre sí a
través de interfaces bien definidas. Cada componente cumple un rol específico dentro del

45

flujo general de la aplicación, lo que favorece la flexibilidad y la capacidad de escalar según
la demanda.

Los principales componentes son:

●​ Frontend (Cliente): Gestiona la interacción con los usuarios finales y envía
solicitudes al backend.​

●​ Frontend (Administrador): Interfaz separada, destinada a la gestión operativa por
parte del personal administrativo.​

●​ Backend (API): Proporciona la lógica de negocio y los servicios de datos necesarios
para el funcionamiento de la aplicación.

2. Componentes Principales de la Arquitectura en detalle

Frontend: Next.js

El frontend está dividido en dos interfaces principales:

●​ Clientes: Desarrollado con Next.js, la interfaz para los usuarios permite realizar
compras, gestionar carritos y pagar mediante Mercado Pago. Está optimizada para
una experiencia móvil-first, con renderizado tanto del lado del cliente como del
servidor, lo que mejora el rendimiento.

●​ Administradores: También construido en Next.js, este frontend está destinado a los
administradores, quienes gestionan productos, pedidos y promociones. Los
administradores acceden a este frontend mediante credenciales otorgadas
manualmente. Este está adaptado a móvil pero se piensa como una aplicación de
escritorio.

Backend: FastAPI (Python)

El backend se desarrolla con FastAPI, que maneja las solicitudes HTTP y gestiona las
interacciones con la base de datos y otros servicios. Está diseñado para ser rápido y
eficiente, permitiendo la escalabilidad y el manejo asíncrono de tareas, como el
procesamiento de pagos o la gestión de productos. El backend se despliega en Google
Cloud Run para asegurar un despliegue escalable y gestionar automáticamente los recursos
según la demanda.

Infraestructura en la Nube:

●​ Google Cloud Run: El backend (FastAPI) será desplegado en Google Cloud Run, lo
que permite escalar automáticamente según la demanda, sin necesidad de
administrar servidores directamente.

●​ GCP Firestore: Base de datos NoSQL utilizada para almacenar los datos de la
aplicación, como productos y pedidos, entre otros.

●​ Google Cloud Storage (Buckets): Se utilizan para almacenar archivos estáticos,
como imágenes de productos.

46

●​ Google Cloud Secret Manager: Se utiliza para gestionar credenciales y secretos,
como claves API o credenciales de Mercado Pago, de forma segura.

●​ GCP Pub/Sub: Para mensajería interna para desacoplar productores y
consumidores y propagar eventos.

●​ Amazon SES: Para emails transaccionales (envío de resúmenes y confirmaciones).

Servicios de Terceros

●​ Mercado Pago: Se integra con la aplicación para gestionar los pagos.

●​ Firebase Authentication: Proporciona autenticación y autorización para la gestión de
usuarios en ambas interfaces (cliente y administrador).

Integración y Despliegue Continuo: GitHub Actions y Docker Hub

●​ GitHub Actions: Automatiza el flujo de trabajo de integración continua y despliegue
continuo (CI/CD), incluyendo la construcción de la imagen de la aplicación y
despliegue de la aplicación tanto en Cloud Run como en Vercel.

●​ Docker Hub: Se utiliza para almacenar las imágenes Docker de la aplicación
backend, asegurando portabilidad y facilitando el despliegue en GCP.

3. Diagrama de la Arquitectura

4. Modelo de Comunicación

Usuario → Frontend (Cantina o Admin): Los usuarios (clientes o administradores)
interactúan con la aplicación desde su navegador web.

●​ Los clientes acceden al Frontend Cantina para realizar pedidos, ver menús y recibir
notificaciones en tiempo real.

●​ Los administradores utilizan el Frontend Admin para gestionar productos, pedidos y
estadísticas.

47

Frontend ↔ Firebase Auth: Ambos frontends se comunican directamente con Firebase
Authentication para gestionar el acceso y la identidad de los usuarios.

●​ Frontend Admin utiliza un proyecto de Firebase distinto al del frontend de clientes,
con credenciales exclusivas para administradores.

Frontend → Backend (FastAPI en Cloud Run): Ambos frontends se comunican con el
backend mediante una API RESTful implementada en FastAPI, utilizando peticiones HTTP y
WebSockets para actualizaciones en tiempo real (sin recargar la página).

Backend → Firestore (Base de Datos): El backend consulta y actualiza la base de datos
Firestore para manejar información de usuarios, productos, pedidos, ventas y estadísticas.

Backend → Bucket (Google Cloud Storage): El backend guarda y administra las
imágenes (por ejemplo, fotos de productos o logos) en un bucket de Google Cloud Storage.

Frontend → Bucket (Google Cloud Storage): Los frontends consumen directamente esas
imágenes desde el bucket, optimizando el rendimiento y reduciendo la carga sobre el
backend.

Backend → Amazon SES: El backend utiliza Amazon Simple Email Service (SES) para
enviar correos transaccionales a los usuarios (por ejemplo, confirmaciones de pedido,
restablecimiento de contraseña o notificaciones administrativas).

Backend ↔ GCP Pub/Sub: Las distintas instancias del backend están sincronizadas
mediante GCP Pub/Sub.

●​ Cuando ocurre un evento (por ejemplo, un nueva orden o cambio en el estado de la
orden), el backend publica un mensaje en Pub/Sub.​

●​ Todas las instancias del backend reciben ese mensaje, garantizando que cada una
notifique correctamente a los usuarios conectados mediante WebSockets, incluso si
están distribuidos entre diferentes instancias o IPs.

Backend ↔ API de Mercado Pago: El backend interactúa con la API de Mercado Pago
para crear enlaces de pago asociados a cada pedido realizado por el usuario.

●​ Estos links de pago son devueltos al frontend para que el cliente pueda completar la
transacción desde la interfaz web.​

●​ Una vez realizado el pago, Mercado Pago envía una notificación al webhook
configurado en el backend.​

●​ El webhook procesa la confirmación de la transacción, valida el estado del pago y
actualiza la información correspondiente en la base de datos (Se crea una orden y
se borra la preOrden).

5. Consideraciones de Escalabilidad y Seguridad

●​ Escalabilidad: La arquitectura está diseñada para escalar automáticamente. Google
Cloud Run ajusta los recursos según el tráfico de la aplicación, mientras que

48

Firestore es una base de datos altamente escalable que maneja cargas de trabajo
intensivas.

●​ Seguridad: Los secretos y credenciales están protegidos usando Google Cloud
Secret Manager, y Firebase Authentication asegura la gestión de usuarios con
métodos de autenticación seguros. Además, los pagos son realizados únicamente a
través de mercadopago, que asegura la seguridad de los mismos

3 Implementación
La implementación del proyecto se abordará de manera desestructurada, siguiendo una
estrategia iterativa e incremental, guiada por la implementación de las historias de usuario.

Despliegue inicial

En primer lugar, se desplegará una versión mínima de la aplicación, que incluirá:

●​ Frontend básico: Se desplegarán ambos repositorios de la interfaz de usuario en
Vercel (recordando que hay un frontend para clientes y otro para administradores de
la cantina).

●​ Backend inicial: Se creará un pipeline de despliegue para la API del backend en
Cloud Run, permitiendo un despliegue continuo. La primera versión incluirá un
método HTTP GET en la ruta base (/) que devolverá información básica sobre la
aplicación.

●​ Base de datos: Se configurará y desplegará la base de datos en Firestore,
asegurando que esté disponible para el backend.

Desarrollo basado en historias de usuario

Una vez que la base del sistema esté operativa, se avanzará en la implementación de las
historias de usuario. Cada historia se desarrollará siguiendo estos pasos:

1.​ Desarrollo o modificación de la interfaz en el frontend correspondiente, asegurando
que el usuario pueda interactuar correctamente. Esto puede implicar la
implementación de nuevos componentes, la modificación de un contexto, o ajustes
en el layout de la aplicación en Next.js.

2.​ Implementación de endpoints en la API para obtener o enviar datos, asegurando la
correcta manipulación de la información en el backend y la base de datos (crear,
leer, actualizar o eliminar según sea necesario).

4 Pruebas
Para el proyecto Cantina UCC, se implementó una estrategia de pruebas centrada en la
validación de la experiencia del usuario final, asegurando que cada funcionalidad cumpla
con los requisitos y expectativas definidos. El enfoque principal fue la ejecución de Pruebas

49

Funcionales, un proceso diseñado para simular escenarios de uso reales y validar los flujos
de trabajo críticos desde la perspectiva tanto de los clientes como de los administradores.

Con el fin de asegurar que el sistema satisficiera estas necesidades, el objetivo fue validar
el cumplimiento de los requisitos funcionales descritos en las historias de usuario. Este
enfoque permitió verificar de manera integral la usabilidad de las interfaces, el correcto
funcionamiento del sistema y la comunicación entre el frontend (Next.js), el backend
(FastAPI) y servicios esenciales como Firestore, Mercado Pago y Amazon SES.

A continuación, se detallan los casos de prueba diseñados para validar cada historia de
usuario.

Casos de Prueba Funcionales:
Rol: Usuario Invitado

Historia de
Usuario Pasos a Ejecutar Resultado Esperado

Quiero explorar el
catálogo de
productos.

1. Acceder a la página principal.
2. Observar la lista de productos.
3. Utilizar la barra de búsqueda
para encontrar un producto.
4. Filtrar productos por categoría.

El catálogo se muestra
correctamente con
imágenes, nombres,
descripciones y precios. La
búsqueda y el filtro funcionan
como se espera.

Quiero poder
agregar productos
al carrito.

1. Seleccionar un producto del
catálogo y hacer clic en "Agregar".
2. Ir al carrito.
3. Aumentar la cantidad de un
producto.
4. Eliminar un producto del carrito.

Los productos se añaden al
carrito. El total y las
cantidades se actualizan
correctamente. Los
productos se pueden
eliminar.

Rol: Usuario Registrado

Historia de
Usuario Pasos a Ejecutar Resultado Esperado

Quiero poder iniciar
sesión utilizando mi
correo electrónico o
cuenta de Google.

1. Ir a la página de "Iniciar Sesión".
2.a Elegir “continuar con Google” e
ingresar una cuenta de google. FIN
2.b Elegir “continuar con Email”
3.a Si ya tenes cuenta, ingresar correo
y contraseña válida y hacer click en
“iniciar sesión”. FIN
3.b Si no tenes cuenta elegir “crear
cuenta”.
4. Usar un correo electrónico válido y
hacer click en “enviar código de
verificación”

El usuario puede
acceder a una cuenta
continuando con google
o continuando con mail
personal distinto a
google, si nunca ha
iniciado sesión, deberá
crear una cuenta y
luego podrá ingresar
con mail y contraseña

50

5. Ir al email ingresado y copiar el
código, ingresarlo en el campo que lo
pide y hacer click en “verificar código”
6. Luego ingresa una contraseña 2
veces y hacer click en “crear cuenta”.
Con la cuenta creada ir al punto 3a

Quiero poder
realizar una compra
y poner un horario
para retirarlo.

1. Agregar productos al carrito, desde
el catálogo o sumando cantidades en
el carrito
2. Seleccionar un horario de retiro
disponible.
3 Hacer click en “confirmar Carrito”
5. Hacer clic en "Pagar con Mercado
Pago" y completar la transacción.

El pago se procesa
exitosamente. La orden
se genera en el sistema
con el horario de retiro
correcto.

Quiero recibir una
confirmación por
correo al finalizar
una compra. con
las instrucciones
para retirar el
pedido y la
información de la
transacción.

1. Realizar una compra exitosa (seguir
los pasos del caso anterior).
2. Revisar la bandeja de entrada del
correo asociado a la cuenta.

Se recibe un correo
electrónico con el
resumen del pedido,
número de orden y
horario de retiro.

Quiero poder
comprar planes de
comida por varios
días. Para recibir
descuentos

1. Ir a la sección "Planes de Comida".
2. Seleccionar un plan y la cantidad de
días/menús.
3. Proceder al pago a través de
Mercado Pago.

El pago se completa y
el plan de comidas se
acredita correctamente
en la cuenta del
usuario. Se realizan los
descuentos
correspondientes.

Quiero poder
aplicar un plan de
comida en una
compra.

1. Asegurarse de tener un plan de
comida activo (comprado previamente
y no vencido)
2. Seleccionar en la pagina principal la
opcion “comprar con planes de
comida”
3. Seleccionar las comidas disponibles
para el plan de comida
4. Proceder al checkout. (Elegir un
horario y confirmar uso del plan)

El precio del producto
se descuenta a cero. El
sistema descuenta un
uso del plan de comida
activo. Se Puede ver
una nueva orden con la
comida seleccionada y
el horario de retiro
seleccionado

Quiero ver el
historial de mis
compras anteriores.
para poder ver la
información de
todos mis pedidos y

1. Iniciar sesión.
2. Navegar a la sección "Mis
Órdenes".
3. Revisar el listado de compras.
4. Navegar a "Mis Planes" para ver los
planes adquiridos.

El historial muestra un
listado correcto de
todas las compras y
planes, con sus detalles
(fecha, total, estado).

51

mis planes de
comida.

Rol: Administrador de la Cantina

Historia de
Usuario Pasos a Ejecutar Resultado Esperado

Quiero poder
agregar, editar o
eliminar productos.

1. Iniciar sesión como administrador.
2. Ir a "Productos" y hacer clic en
"Agregar Producto".
3. Llenar el formulario y guardar.
4. Buscar el nuevo producto y hacer
clic en "Editar".
5. Modificar el precio y guardar.
6. Eliminar el producto.

El producto se crea,
actualiza y elimina
correctamente. Los
cambios se reflejan en
el catálogo para
clientes.

Quiero poder
visualizar y
administrar los
pedidos de los
usuarios.

1. Iniciar sesión como administrador.
2. Ir a la sección "Órdenes".
3. Filtrar órdenes por fecha y estado.
4. Cambiar el estado de una orden de
"Pendiente" a "procesando" y luego a
"Listo para retirar".

Las órdenes se
muestran
correctamente. Los
filtros funcionan. El
estado de la orden se
actualiza y el cambio es
visible para el cliente.

Quiero poder
obtener un informe
diario y mensual de
las compras.

1. Iniciar sesión como administrador.
2. Ir a "Resúmenes".
3. Seleccionar la vista "Diaria" y
verificar los montos.
4. Cambiar a la vista "Mensual" y
verificar el total consolidado.
5. Realizar una compra en la cantina
como un cliente.
6. Realizar la compra de un plan de
comida como un cliente
7 Las compras se ven reflejada en el
resumen diario y mensual

El sistema muestra los
montos totales de
ventas correctos para
los periodos
seleccionados,
desglosando los
productos vendidos.

Quiero poder
imprimir los tickets
de los pedidos.

1. En el listado de "Órdenes",
seleccionar una orden.
2. Hacer clic en el botón "Imprimir
Ticket".

Se abre el diálogo de
impresión del navegador
con un formato de ticket
claro que contiene los
detalles del pedido.

Quiero tener una
pantalla con las
órdenes para la
cocina.

1. Iniciar sesión como administrador.
2. Navegar a la pantalla "Cocina"

La pantalla muestra las
órdenes activas en un
formato claro y fácil de
leer para el personal de
cocina, y se actualiza en
tiempo real cuando

52

desde el panel de
“ordenes” enviamos una
a la cocina o la
retiramos de aca.

Quiero poder crear
y gestionar los
planes de comida

1. Navegar a la página "Planes de
comida".
2. Hacer clic en una opción para
"Crear Plan".
3. Llenar el formulario con los detalles
del plan (ej. nombre, descripción,
precio base, descuentos, fecha de
vigencia).
4. Guardar el nuevo plan.
5. Buscar el plan recién creado en la
lista y seleccionar "Editar"
6. Modificar todos los campos
posibles y guardar los cambios.

El plan se crea
exitosamente y se lista
en la página de
administración . El plan
nuevo (y sus
modificaciones) se
refleja en la página
"Planes de comida" del
cliente.

Aclaración sobre el Entorno de Pruebas

Un aspecto fundamental de la estrategia fue la decisión de realizar las validaciones
funcionales directamente sobre el entorno de producción. Es crucial aclarar este punto:

1.​ Contexto del Proyecto: El desarrollo fue llevado a cabo por un único programador
como parte de un proyecto académico. No se trataba de un equipo de desarrollo
gestionando un sistema comercial.

2.​ Estado de la Aplicación: Si bien la infraestructura estaba desplegada en un
entorno "en vivo", la aplicación aún no se encontraba en una fase de producción
real. No había sido lanzada a la comunidad universitaria, no tenía usuarios activos
(más allá del desarrollador) y las únicas transacciones monetarias eran pruebas
controladas con montos mínimos.

Bajo estas circunstancias, se tomó una decisión pragmática: mantener dos entornos
idénticos (producción y staging) habría representado una complejidad y un costo
innecesarios para un proyecto de esta escala y en esta etapa. El objetivo era agilizar la
validación de funcionalidades en una configuración idéntica a la final, sin el riesgo de
impactar a una base de usuarios que, en ese momento, era inexistente.

Reconocemos que esta práctica no es el estándar en un entorno profesional para
sistemas ya operativos. Se subraya que, para el mantenimiento futuro y la implementación
de nuevas funcionalidades una vez la aplicación esté en uso, es imprescindible configurar
un entorno de preproducción (o staging). Este entorno replicaría la infraestructura de
producción y permitiría probar cualquier cambio de manera aislada antes de su lanzamiento
definitivo, garantizando la estabilidad del servicio.

Otras aclaraciones

No se implementaron suites de pruebas unitarias o de integración automatizadas. La
validación de la correcta interacción entre el frontend (Next.js), el backend (FastAPI) y los

53

servicios de terceros (Firestore, Mercado Pago) se abordó a través de las pruebas
funcionales de los flujos completos de usuario.

54

IMPACTO ECONÓMICO
Para el impacto económico se estimaron los gastos operativos asociados con la
infraestructura de nube (Google Cloud Platform - GCP, Vercel y Amazon SES) y el
procesamiento de pagos (Mercado Pago) bajo tres escenarios de uso: 100, 1,000 y 5,000
compras diarias.

1. Metodología y Supuestos Clave
A continuación se detallan los supuestos fundamentales para la estimación de costos.

Escenarios Definidos:

Se evaluarán tres niveles operativos:

●​ Escenario 1 (Baja Escala): 100 compras/día (~3,000 compras/mes).

●​ Escenario 2 (Media Escala): 1,000 compras/día (~30,000 compras/mes).

●​ Escenario 3 (Alta Escala): 5,000 compras/día (~150,000 compras/mes).

Pila de Infraestructura:

●​ Backend y Base de Datos (GCP): Servicios en us-central1 (Iowa).

○​ Cloud Firestore

○​ Cloud Run.

○​ Cloud Storage.

●​ Frontend (Vercel): Plataforma Vercel para Next.js.

●​ Amazon SES

Estimación de uso por compra

Para realizar una estimación de costos precisa y relevante, se establecieron una serie de
supuestos sobre el consumo de recursos por cada "compra" o "sesión de usuario" exitosa.
Estas cifras representan un promedio agregado de las interacciones necesarias para
completar un pedido, desde la navegación hasta la confirmación, y tienen en cuenta las
particularidades de la arquitectura implementada.

Consumo GCP por Compra:

Los siguientes valores son estimaciones promedio por cada compra exitosa en la aplicación,
cubriendo tanto las operaciones del cliente como las de los administradores:

Lecturas Firestore: 85

55

Una única compra implica múltiples operaciones de lectura en la base de datos a lo largo
del recorrido del usuario, el proceso del backend, y las interacciones post-compra. Esto
incluye:

●​ Fase Pre-compra y durante la compra (aproximadamente 75+ lecturas):

○​ Lectura del catálogo de productos (inicial y posibles filtros/búsquedas, que
pueden ser varias lecturas). (50 o más productos)

○​ Lectura de productos en la pantalla del carrito de compras de compras.

○​ Lectura de la información del usuario para el checkout.

○​ Lecturas asociadas a la lógica de negocio para validar o actualizar planes de
comida (ej., verificar existencia de plan).

●​ Fase Post-compra (aproximadamente 8-10 lecturas):

○​ Lectura de para la confirmación enviada por email.

○​ Lectura del historial de pedidos del usuario (Mis Órdenes), donde la nueva
compra aparecerá. Se asume que el usuario revisará su historial después de
una o varias compras.

○​ Lecturas para los administradores de la cantina al visualizar las nuevas
órdenes (Órdenes y Cocina), lo cual puede implicar varias lecturas para
filtrar, ordenar o ver detalles.

○​ Lectura del estado actualizado del FoodPlan o OrdersForPlans si se utilizó un
plan de comida, para reflejar el consumo.

Este número (85) es una estimación agregada que intenta cubrir el flujo completo de una
compra exitosa y las operaciones auxiliares necesarias, tanto inmediatas como posteriores,
tanto del cliente como de la administración, para considerar todo el ciclo de vida de la
información de esa compra.

Escrituras Firestore: 10

Las operaciones de escritura son fundamentales para registrar el estado de la compra y
actualizar los datos. Esto incluye:

●​ Creación de la PreOrden con sus detalles.

●​ Varias escrituras post-pago, que son cruciales:

○​ Creación de la Order definitiva (con sus ítems, estado, etc.).

○​ Actualización del DayOrderCounter.

○​ Actualización o creación de DailySummaries y MonthlySummaries
(consolidados de ventas).

○​ Actualización del OrdersForPlans o decremento de unidades de un FoodPlan
si se utiliza.

56

○​ Eliminación de la PreOrden tras la confirmación del pago.

Cada una de estas acciones puede implicar una o más escrituras, justificando el promedio
de 10 por compra.

Solicitudes Cloud Run: 15

Cada interacción del frontend con el backend se traduce en una solicitud HTTP a Cloud
Run. Una compra promedio involucra:

●​ Una solicitud para cargar el catálogo, detalles de productos del carrito.

●​ La solicitud para iniciar el proceso de pago con Mercado Pago (generar la URL de
pago).

●​ Una solicitud crucial: el webhook de Mercado Pago que notifica al backend sobre el
estado del pago.

●​ Solicitudes para verificar el estado de la orden o acceder al historial post-compra.

●​ Solicitudes de la interfaz de administración para ver órdenes recientes o resúmenes
diarios.

El número 15 es un promedio que abarca la ruta completa de un usuario desde la
navegación inicial hasta la confirmación del pedido, incluyendo las interacciones de los
servicios (como el webhook) y las consultas subsiguientes relevantes.

Egreso Cloud Storage: 10MB (hacia Sudamérica)

El Egreso (o transferencia de datos saliente) es el cargo que se aplica por el volumen de
datos (en GB) que sale de la red del proveedor de la nube desde la región de origen hacia
un destino externo, como: Internet (que incluye a tus usuarios en Sudamérica) u otra región
de la nube.

En nuestro caso, el "egreso a Sudamérica" es el costo directo por cada GB que los usuarios
sudamericanos descargan o acceden desde el almacenamiento.

Una sesión de compra no solo carga una imagen, sino que el usuario navega por el
catálogo de productos. Los 10 MB representan un catálogo con aproximadamente unas 35
imágenes.

Operaciones de Clase B: 40

Las Operaciones de Clase B son cargos que se aplican por ciertas solicitudes realizadas a
tu almacenamiento en la nube que generalmente implican la lectura del estado existente de
los objetos o metadatos, pero no modifican el estado de los datos.

Son consideradas operaciones de "baja frecuencia" o de menor impacto en los recursos del
sistema en comparación con las de Clase A (Operaciones de mutación de estado o de alto
consumo. (Ej.: Subir objetos Insert/Update)).

57

Cuando un usuario en Sudamérica descarga un archivo (por ejemplo, de 5 MB) de nuestro
bucket:

1.​ Se registra una operación de Clase B (la solicitud Get para obtener el archivo). Clase
B cobra por el acto de solicitar el dato (la llamada API, independientemente de
dónde vaya el dato).

2.​ Se registra una transferencia de salida (Egress) de 5 MB dirigida a Sudamérica. El
egreso cobra por el volumen del dato transferido fuera de la región (los GB
descargados).

Las 40 operaciones por compra se justifican para un catálogo de 35 productos más la vista
de imágenes en resúmenes de orden por parte del admin y del cliente

Resumen consumos GCP:

●​ Lecturas Firestore: 85.

●​ Escrituras Firestore: 20.

●​ Solicitudes Cloud Run: 15.

●​ Egreso Cloud Storage: 10MB (hacia Sudamérica).

●​ Operaciones Cloud Storage (Clase B): 40.

Uso de Vercel (frontend):

El frontend de Cantina UCC está desplegado en Vercel (Next.js), una plataforma que utiliza
un modelo de costos basado en planes fijos que incluyen grandes paquetes de servicios
clave, como la transferencia de datos y las solicitudes.

La única métrica que se espera que tenga un impacto financiero significativo en los
escenarios definidos es el Fast Data Transfer (FDT), que mide el volumen de datos que la
aplicación entrega desde la red global de Vercel hacia los usuarios finales.

No se espera que otras métricas generen un costo significativo dentro del rango normal de
operación, dado que la aplicación está diseñada para manejar compras internas de una
universidad y no grandes picos de tráfico viral. Sin embargo, estas métricas deben ser
monitoreadas en la puesta en producción de la aplicación:

Métrica Límite del
Plan Pro Riesgo de Costo y Escenario de Disparo

Edge
Requests
(Solicitude
s al Edge)

10 millones
por mes

Riesgo bajo. El escenario de mayor uso (E3: 150k
compras/mes) genera solo ~2.25M de solicitudes. El
límite de 10 M es muy alto para la carga de trabajo
esperada, y el excedente es marginal ($2.00 por millón
[9]).

58

Fast Origin
Transfer
(FOT)

10 GB
gratuito
(luego pago
por uso)

Riesgo medio. Si la configuración del caché
(ISR/Headers) falla, se podría generar una alta
transferencia de datos desde el backend de GCP a
Vercel. Un FOT elevado indica un fallo de eficiencia que
debe corregirse, más que un problema de escala.

Image
Optimizati
on -
Transform
ations

300 KB (plan
gratuito)

Riesgo bajo. Solo se dispara cuando se suben y
transforman nuevas imágenes. Dado que el menú de la
cantina no cambia radicalmente todos los días, se
espera que este costo sea despreciable.

Function
Invocation
s / CPU
Duration

Gran
volumen
incluido

Riesgo muy bajo. La lógica pesada de negocio y pagos
reside en el backend de GCP. El uso de funciones
serverless de Vercel para el frontend debería ser
mínimo.

​

Firebase Authentication

Se asume < 50,000 MAU (usuarios activos por mes) en todos los escenarios,
manteniéndose dentro del nivel gratuito. Superar este límite activaría costos adicionales.

Comisiones de Mercado Pago

Se analizan las tasas porcentuales para Checkout/Link de Pago en Argentina.

Consumo amazon SES por Compra

3 emails (confirmación de compra, estado de orden lista, estado de orden entregada)

2. Análisis de Costos Estimados por Componente
Costos de GCP (us-central1)

El cálculo de costos se deriva directamente de la identificación del volumen de sobreuso
para cada servicio, una vez agotada la cuota gratuita.

Tabla resumen de los umbrales clave de la capa gratuita (Free Tier)

Componente GCP Límite Diario (FD) Límite Mensual (30 días)

Cloud Run Solicitudes N/A 2,000,000

Firestore Lecturas 50,000 1,500,000

Firestore Escrituras 20,000 600,000

Storage Ops Clase B N/A 50,000

59

Egresos de Red (Internet) N/A 200 GiB

La gestión de la Capa Gratuita de Firestore requiere una mención específica. Sus límites
están definidos diariamente: 50,000 lecturas y 20,000 escrituras. Asumiendo un consumo
perfectamente uniforme a lo largo del mes, el límite efectivo de 30 días es de 1,500,000
lecturas y 600,000 escrituras. Si el patrón de uso no fuera uniforme (por ejemplo, picos de
tráfico), cualquier consumo que exceda la cuota diaria sería facturable inmediatamente,
incluso si el total mensual se mantiene cerca del límite agregado.

Las tarifas base aplicadas para el cálculo del excedente son las siguientes, basadas en los
precios predeterminados de GCP:

Componente GCP Tarifa Unitaria (USD) Unidad de Medida

Cloud Run Solicitudes $0.40 Por 1,000,000 de
Peticiones

Firestore Lecturas $0.03 Por 100,000 Lecturas

Firestore Escrituras $0.09 Por 100,000 Escrituras

Storage Ops Clase B $0.0004 Por 1,000 Operaciones

Egresos de Red (Internet) $0.085 Por GiB (Gigibyte)

Se procede a calcular el excedente de uso para cada componente y escenario, aplicando
las tarifas definidas:

Escenario de Consumo Bajo (3k Compras/Mes)

El volumen total de consumo es marginal:

●​ Cloud Run 45k

●​ Firestore Lecturas 255k

●​ Firestore Escrituras 60k

●​ Storage Ops B 60k

●​ Egreso 29.3 GiB

Componente Consumo
Total

Límite
Gratuito Excedente Costo

Unitario
Costo
Mensual

Cloud Run
Rqs 45k 2.0 M 0 $0.40/M $0.00

60

Firestore
Lecturas 255k 1.5 M 0 $30.00/M $0.00

Firestore
Escrituras 60k 0.6 M 0 $90.00/M $0.00

Storage Ops
B 60k 50k 10k $0.40/M $0.0004

Egreso de
Red 29.3 GiB 200 GiB 0 $0.085/GiB $0.00

El costo total facturado es de $0.00 (después del redondeo del excedente mínimo en
Storage Ops B). Este nivel de tráfico es ideal para la fase de desarrollo, pruebas de
concepto, o aplicaciones de bajo volumen, ya que opera casi en su totalidad dentro de la
capa gratuita ofrecida por GCP.

Escenario de Consumo Medio (30k Compras/Mes)

El consumo total se incrementa a:

●​ Cloud Run 450k

●​ Firestore Lecturas 2.55 M

●​ Firestore Escrituras 0.6 M

●​ Storage Ops B 0.6 M

●​ Egreso 293.0 GiB

Cálculos Detallados del Excedente Facturable:

1.​ Cloud Run Solicitudes: 450k solicitudes se mantienen muy por debajo del límite de
2.0 M. Costo: $0.00.

2.​ Firestore Lecturas:

○​ Consumo Total: 2.55 M. Límite Gratuito: 1.5 M.

○​ Excedente Billable: $2,550,000 - 1,500,000 = 1,050,000 Lecturas.

○​ Costo: (1,050,000/100,000)×$0.03=10.5×$0.03=$0.32.

3.​ Firestore Escrituras:

○​ Consumo Total: 0.6 M (600k). Límite Gratuito: 0.6 M.

○​ Excedente Billable: 0. Costo: $0.00.

4.​ Storage Ops Clase B:

61

○​ Consumo Total: 0.6 M (600k). Límite Gratuito: 50k (0.05 M).

○​ Excedente Billable: $600,000 - 50,000 = 550,000 Operaciones.

○​ Costo: (550,000/1,000,000)×$0.40=0.55×$0.40=$0.22.

5.​ Egreso de Red (GiB):

○​ Consumo Total: 293.0 GiB. Límite Gratuito: 200 GiB.

○​ Excedente Billable: 293.0 GiB−200.0 GiB=93.0 GiB.

○​ Costo: 93.0 GiB×$0.085/GiB=$7.91.

El costo total facturado es de $8.45. En este nivel, la aplicación ha superado el umbral de
la Capa Gratuita y el costo del Egreso de Red ya se establece como el impulsor de costos
dominante.

Escenario de Consumo Alto (150k Compras/Mes)

El consumo total escala significativamente

●​ Cloud Run 2.25 M
●​ Firestore Lecturas 12.75 M
●​ Firestore Escrituras 3.0 M
●​ Storage Ops B 3.0 M
●​ Egreso 1,464.8 GiB.

Cálculos Detallados del Excedente Facturable:

1.​ Cloud Run Solicitudes:

○​ Excedente Billable: 2.25 M−2.0 M=0.25 M Solicitudes.

○​ Costo: (0.25 M/1 M)×$0.40=$0.10.

2.​ Firestore Lecturas:

○​ Excedente Billable: 12.75 M−1.5 M=11.25 M Lecturas.

○​ Costo: (11.25 M/100,000)×$0.03=112.5×$0.03=$3.38.

3.​ Firestore Escrituras:

○​ Excedente Billable: 3.0 M−0.6 M=2.4 M Escrituras.

○​ Costo: (2.4 M/100,000)×$0.09=24.0×$0.09=$2.16.

○​ Costo Total Firestore: $3.38+$2.16=$5.54.

4.​ Storage Ops Clase B:

○​ Excedente Billable: 3.0 M−0.05 M=2.95 M Operaciones.

○​ Costo: (2.95 M/1 M)×$0.40=2.95×$0.40=$1.18.

62

5.​ Egreso de Red (GiB):

○​ Excedente Billable: 1,464.8 GiB−200.0 GiB=1,264.8 GiB.

○​ La tarifa de $0.085/GiB aplica para el tramo de 200 GiB a 10,240 GiB.

○​ Costo: 1,264.8 GiB×$0.085/GiB=$107.51.

El costo total asciende a $114.33, confirmando la predominancia del Egreso de Red, que
consume casi la totalidad del presupuesto operativo.

Corrección del 3er escenario

Sin embargo, al utilizar la calculadora de precios de Google Cloud Platform con los mismos
parámetros de consumo, el costo total estimado para el tercer escenario asciende a USD
214. Link a los resultados del cálculo

63

https://docs.google.com/spreadsheets/d/1oEDqZBdYckOA4eCx2Wa2mApxkv2vjfuBUDKKCiN3Khc/edit?usp=drive_link

Por lo que vamos a tomar este valor como valor final para el 5to escenario por que
suponemos que esta teniendo mas cosas en cuenta que se nos pueden haber pasado de
largo

Costos de Vercel

Teniendo en cuenta que la única métrica analizada es el FDT, los costos en los distintos
escenarios son los siguientes:

Métrica Escenario 1 (100
compras/día)

Escenario 2 (1,000
compras/día)

Escenario 3 (5,000
compras/día)

FDT Consumo
Mensual

30 GB 300 GB 1,500 GB

Límite Plan
Hobby

100 GB incluido
Superado (Requiere
Plan Pro)

Superado (Requiere
Plan Pro)

Límite Plan Pro 1 TB (1,024 GB) incluido
1 TB (1,024 GB)
incluido

Superado (476 GB
de excedente)

Costo FDT
Adicional

$0.00 $0.00 $104.72

Total Vercel $0.00 $20.00 (Plan Base) $124.72

Costos de Mercadopago

El costo es un porcentaje variable sobre las ventas, dependiente del plazo de acreditación
elegido.

Estructura de Tasas (Incluyendo 21% IVA): Las tasas efectivas totales para
Checkout/Link de Pago en Argentina son :

●​ Inmediata: 7.61%

●​ 10 Días: 5.31%

●​ 18 Días: 4.10%

●​ 35 Días: 1.80%

Tabla de tasas de comisión de Mercado Pago

Plazo de Disponibilidad Tasa Base (%) IVA (21%) Tasa Total (%)

Al instante 6.29% 1.32% 7.61%

64

10 días 4.39% 0.92% 5.31%

18 días 3.39% 0.71% 4.10%

35 días 1.49% 0.31% 1.80%

Este costo escala linealmente con la facturación y será el componente dominante del gasto
operativo a medida que la aplicación crezca.

Costos de Amazon SES

 Emails por compra

Cada compra genera 3 correos.

●​ Escenario 1: 100 compras/día → 300 emails/día → ~9,000 emails/mes.

●​ Escenario 2: 1,000 compras/día → 3,000 emails/día → ~90,000 emails/mes.

●​ Escenario 3: 5,000 compras/día → 15,000 emails/día → ~450,000 emails/mes.

Costo = (emails/mes ÷ 1,000) × $0.10 USD

1.​ Escenario 1 – Baja escala​
 9,000 emails/mes → (9,000 ÷ 1,000) × $0.10 = $0.90 USD/mes​

2.​ Escenario 2 – Media escala​
 90,000 emails/mes → (90,000 ÷ 1,000) × $0.10 = $9 USD/mes​

3.​ Escenario 3 – Alta escala​
 450,000 emails/mes → (450,000 ÷ 1,000) × $0.10 = $45 USD/mes

4. Análisis Costo-Beneficio Conciso
●​ Costos de Infraestructura (GCP + Vercel + amazon SES): El riesgo financiero es

bajo. Los costos varían desde ~$0.90/mes (100 compras/día) hasta ~$383/mes
(5,000 compras/día). La infraestructura es asequible y escalable. La principal
decisión es la transición al plan Pro de Vercel (al superar aprox las 250
compras/día).

●​ Costos de Procesamiento de Pagos (Mercado Pago): Es el factor de costo
principal y variable. Las comisiones (entre 1.80% y 7.61% según el plazo de entrega
en mayo 2025) impactan directamente la rentabilidad. La elección del plazo de
acreditación es una decisión estratégica clave (margen vs. flujo de caja).

●​ Viabilidad: La viabilidad económica depende del volumen de ventas y del margen
por transacción para cubrir las comisiones de Mercado Pago. Sin embargo la cantina

65

ya trabaja con cobros a través de Mercadopago QR que aplica las mismas tasas de
cobro, por lo que no que ya deberían estar adaptados a las comisiones que aplica
esta plataforma. Por otro lado, la infraestructura no es una barrera significativa en
estos niveles de escala.

●​ Gasto en relación a las Ventas (En el escenario de mayor gasto 5,000
compras/día): Asumiendo un promedio de $2,000 ARS por compra, el costo total de
infraestructura (~$383 USD/mes) representa aproximadamente sólo el 0.195% del
volumen de ventas mensual ($2.000 x 5.000 x 30 = $300.000.000 ARS, o ~$200.000
USD con dolar a $1500). Por lo que sea cual sea el escenario, el aumento del
consumo de recursos y de los costos en los servidores se justifica automáticamente
por el aumento de las ventas que disparan estos costos. Haciendo el mismo cálculo
suponiendo que los precios se nos dispararan a $1000 USD y manteniendo el nivel
de ventas (suponiendo que subestimamos los costos de la infraestructura), ese
monto (los 1.000 USD) representarían un 0.5% del monto total de ventas. Una cifra
más que aceptable en comparación con las comisiones que cobra mercadopago

●​ Potencial de Optimización de GCP: Si se configura adecuadamente el caché de
las imágenes del catálogo de productos en Vercel, asegurando que solo se soliciten
las imágenes al bucket de Cloud Storage una vez al año (o cuando la imagen se
actualiza, cambiando su nombre), el componente de Egreso de Red de GCP
($107.51) se podría eliminar, reduciendo el costo total de GCP a ~$18/mes en el
Escenario 3.

●​ Volviendo a recalcar, si la configuración del servidor es adecuada (no genera gastos
innecesarios), cualquier gasto infraestructural se verá justificado por el incremento
correspondiente en las ventas; no obstante, dicho gasto puede monitorearse y
optimizarse para maximizar la eficiencia del sistema.

5. Para tener en cuenta
●​ Optimizar Mercadopago: Analizar flujo de caja vs. margen para elegir el plazo de

acreditación óptimo.

●​ Gestionar Costos en GCP: Usar Alertas de Presupuesto para monitorear (no limitar)
el gasto. Considerar Cuotas para limitar proactivamente el uso de recursos si es
necesario.

●​ Gestionar Costos en Vercel: Monitorear FDT (Fast Data Transfer) en el Dashboard
de Usage. Optimizar imágenes/frontend para retrasar la necesidad del plan Pro. En
Pro, usar Spend Management para alertas o pausas automáticas.

6. Resumen de Resultados y Conclusión Final
Resumen de Costos:

●​ Infraestructura (GCP + Vercel + SES):

○​ 100 compras/día: ~$0.90 USD/mes.

66

○​ 1,000 compras/día: ~$37 USD/mes.

○​ 5,000 compras/día: ~$383 USD/mes.

●​ Procesamiento de Pagos (Mercado Pago): Costo variable entre 1.80% y 7.61% del
valor de cada transacción.

El análisis detallado demuestra que Cantina UCC es un proyecto económicamente factible y
altamente escalable desde el punto de vista operativo. La infraestructura tecnológica
basada en Google Cloud Platform (GCP) y Vercel permite soportar desde 0 hasta 5.000
compras diarias con costos mensuales que oscilan entre $0.90 y $383 USD, dependiendo
del volumen de uso. Esta estructura de costos progresiva y predecible ofrece una base
sólida para el crecimiento sostenido del sistema, sin representar un riesgo financiero
significativo en las etapas iniciales.

El principal componente variable en los costos operativos es la comisión de Mercado Pago,
que depende directamente del volumen de ventas y del plazo de acreditación elegido. Este
aspecto, sin embargo, puede ser optimizado estratégicamente según las necesidades de
flujo de caja o márgenes de ganancia esperados. La existencia de múltiples opciones de
acreditación con tasas diferenciadas permite a los administradores del sistema adaptar el
modelo económico en función de la situación particular del negocio.

Además, la posibilidad de permanecer dentro de los niveles gratuitos en GCP hasta escalas
considerables (por ejemplo, hasta 1.000 compras diarias) reduce significativamente la
barrera de entrada, facilitando el lanzamiento y consolidación del servicio sin requerir una
inversión inicial significativa en infraestructura.

A estos factores se suma que ciertos costos pueden ser compensados indirectamente a
través de:

●​ Un posible aumento en las ventas, producto de una experiencia de compra más ágil,
y la fidelización de clientes al incluir los planes de comida.​

●​ Beneficios no tangibles que, aunque difíciles de cuantificar, generan un alto valor
para la institución: reducción de filas, inclusión digital, conciencia ecológica,
fortalecimiento del compromiso social y mejora del clima institucional. Estos
elementos contribuyen a consolidar una imagen positiva del servicio, a justificar su
implementación y a facilitar el apoyo institucional o incluso la financiación externa.

67

RSU
La Responsabilidad Social Universitaria (RSU) en la Universidad Católica de Córdoba
(UCC) se entiende como la capacidad y compromiso institucional para responder a las
necesidades de transformación de la sociedad en la que está inmersa, a través del ejercicio
de sus funciones sustantivas: docencia, investigación, extensión y gestión interna.

En este marco, el proyecto de tesis "Cantina UCC" se alinea plenamente con los principios
de la RSU al abordar una problemática concreta dentro de la comunidad universitaria: las
largas filas y tiempos de espera en la cantina durante los horarios de mayor afluencia. A
través del desarrollo de una aplicación web responsive, que permite realizar pedidos y
pagos anticipados, se busca mejorar la calidad de vida de estudiantes, docentes y personal
administrativo, optimizando su tiempo y su experiencia en el campus.

Además, el proyecto promueve la inclusión digital, ya que ofrece una plataforma intuitiva y
accesible para todo tipo de usuarios, independientemente de su familiaridad con la
tecnología.

En el plano ambiental, Cantina UCC también contribuye activamente a la sostenibilidad al
eliminar la necesidad de emitir tickets físicos. De este modo, se reducen significativamente
el consumo de papel, agua, energía y las emisiones de CO₂ asociadas a la producción de
papel térmico. La aplicación no solo digitaliza el proceso de compra, sino que además
promueve activamente la conciencia ambiental entre sus usuarios: con cada compra,
informa sobre el ahorro de recursos generado, generando así un efecto educativo y de
sensibilización sobre el impacto positivo que tiene adoptar hábitos más sostenibles en la
vida diaria.

Por todas estas razones, el proyecto "Cantina UCC" representa una solución concreta y
aplicada de Responsabilidad Social Universitaria, en tanto articula tecnología, servicio y
valores institucionales en un mismo desarrollo. Si bien su alcance es limitado al entorno
inmediato del campus, logra integrar de manera equilibrada dimensiones sociales,
organizacionales, educativas y ambientales. No se trata solamente de una solución técnica
a un problema cotidiano, sino de una propuesta que busca generar valor para la comunidad
universitaria, contribuyendo a una mejor calidad de vida, a una cultura de solidaridad y a
prácticas más sostenibles, en coherencia con el compromiso formativo y transformador que
la UCC promueve desde su modelo institucional.

En las secciones dedicadas al impacto social y al impacto ambiental, se profundizará con
mayor detalle en las implicancias concretas que este proyecto tiene en cada uno de estos
ámbitos.

68

IMPACTO SOCIAL
Beneficio o Impacto Positivo General
Cantina UCC representa una mejora en la calidad de vida de la comunidad universitaria. Al
optimizar el proceso de compra y pago de alimentos en la cantina, la aplicación reducirá los
tiempos de espera, mejorará la experiencia del usuario y permitirá un uso más eficiente del
tiempo, especialmente en contextos de recreos breves. Esto contribuirá a un entorno
académico más saludable, ordenado y accesible, donde los estudiantes, docentes y
personal administrativo puedan disfrutar de sus tiempos de descanso con mayor efectividad
y tranquilidad.

Segmentos de la Población Beneficiados
El principal grupo beneficiado por esta solución serán los estudiantes universitarios, quienes
muchas veces disponen de recreos muy cortos para almorzar. También se verán
favorecidos los docentes y el personal administrativo, que podrán evitar largas filas y
acceder a un servicio más eficiente. Asimismo, el equipo de administración de la cantina se
beneficia al contar con herramientas que optimizarán la operación diaria, reducirán la carga
de trabajo en horas pico y permitirán prever la demanda.

Inclusión y Reducción de Brechas
Cantina UCC promueve la inclusión digital al acercar herramientas tecnológicas a un
servicio tradicional. Este enfoque permite reducir la brecha entre quienes están
acostumbrados a sistemas digitales y quienes no, ya que la plataforma ha sido pensada
para ser intuitiva y accesible para todo tipo de usuarios y teléfonos móviles,
independientemente de su familiaridad con la tecnología. Además, al ofrecer opciones de
compra anticipada y digital, se garantiza mayor equidad en el acceso al servicio, sin
importar la disponibilidad horaria de cada estudiante.

69

IMPACTO MEDIOAMBIENTAL

El proyecto Cantina UCC contribuye activamente a la sostenibilidad medioambiental
mediante distintas acciones enfocadas en reducir residuos, optimizar recursos y operar
sobre una infraestructura más limpia:

Eliminación de tickets impresos

La digitalización total del sistema de compra elimina la necesidad de emitir tickets físicos.
Esto representa un ahorro directo de recursos cada vez que un ticket no es impreso.

Ahorro por 1 ticket no impreso:

●​ Papel: 0.2 gramos - Un ticket promedio de 10–12 cm pesa entre 0.15 y 0.2 gramos,
según el gramaje del papel térmico (48–55 g/m²).

●​ Madera cruda evitada: 0.4 a 0.48 gramos - Según diversas fuentes, para fabricar una
tonelada de papel virgen se requieren aproximadamente entre 2.400 y 2.700
kilogramos de madera, lo que equivale a unos 17 árboles adultos. ​Dado que un
ticket promedio pesa alrededor de 0,2 gramos, al evitar la impresión de un solo ticket
se ahorran aproximadamente 0,4 a 0,48 gramos de madera cruda.​

●​ Agua utilizada para producir el papel: 25 a 50 ml - La producción de papel consume
entre 125 y 250 litros de agua por kilogramo de papel.​ Cálculo: 0.0002 kg de papel ×
125–250 L/kg = 0.025–0.05 L = 25–50 ml

●​ Energía utilizada en producción e impresión: ~0.0018 kWh - La fabricación de papel
consume entre 6 y 12 kWh por kilogramo.​ Cálculo: 0.0002 kg de papel × 9 kWh/kg
(considerando producción y procesamiento) = 0.0018 kWh

●​ Emisiones de CO₂: ~2 gramos - La producción de papel genera entre 0.7 y 1.2 kg de
CO₂ por kilogramo de papel.​ Cálculo: 0.0002 kg de papel × 10 kg CO₂/kg = 0.002 kg
= 2 g

Ahorro acumulado por 1000 tickets no impresos:

●​ Papel: 200 gramos

●​ Madera cruda evitada: 400 a 480 gramos

●​ Agua utilizada para producir el papel: 25 a 50 Litros

●​ Energía utilizada en producción e impresión: 1,8 kWh

●​ Emisiones de CO₂: ~2 kg

Dato clave extra: El papel térmico usado en tickets no es reciclable y suele terminar como
residuo no recuperable, aumentando el impacto ambiental a largo plazo.

¿Qué se puede hacer con 1 kWh?

70

Dispositivos personales:

●​ Cargar un celular hasta 75 veces

●​ Usar una notebook durante 20 a 25 horas

●​ Escuchar música con auriculares bluetooth por más de 300 horas

Cocina y hogar:

●​ Hervir 10 litros de agua en una pava eléctrica

●​ Tostar pan durante 1 hora continua

●​ Usar una cocina eléctrica de 1000 W durante 1 hora

●​ Lavar una carga de ropa en frío (lavarropas eficiente)

Electrodomésticos:

●​ Hacer funcionar una heladera eficiente por casi 1 día

●​ Encender una lámpara LED de 10W durante 100 horas

●​ Alimentar una TV LED de 100W por unas 10 horas

Transporte eléctrico:

●​ Recargar una bicicleta eléctrica completamente una vez

●​ Recorrer 6 a 8 km con un auto eléctrico (promedio de 15 kWh/100 km)

Concientización sobre la eliminación de tickets impresos

La app no solo digitaliza la experiencia de compra, sino que también informa a los usuarios
sobre el impacto positivo de evitar los tickets físicos. Con cada compra realizada, te
mostramos cuántos recursos estás ayudando a ahorrar (papel, agua, energía y emisiones) y
te recordamos que cada pequeño gesto suma en el cuidado del planeta. Elegir no imprimir
un ticket es elegir un futuro más sustentable.

Reducción del desperdicio alimentario

La funcionalidad de Planes de Comida y Compra anticipada, permite a los usuarios
reservar sus comidas con antelación. Esto habilitará a la cantina a planificar mejor la
cantidad de alimentos a preparar cada día, disminuyendo el excedente y el desperdicio de
comida.

Infraestructura sustentable

Actualmente, la aplicación está alojada en Google Cloud, una plataforma que opera con
energía 100% renovable en todos sus centros de datos. Esto significa que la operación del
backend (incluyendo la base de datos y API) tiene una huella de carbono prácticamente

71

nula, alineándose con las prácticas más sostenibles del sector. Anexo 5

72

BENEFICIOS POST
IMPLEMENTACIÓN
Una vez implementado el sistema Cantina UCC, se espera obtener una serie de beneficios
tangibles e intangibles que impactarán positivamente tanto en la administración de la
cantina como en la comunidad universitaria.

Beneficios Tangibles (Operativos y Financieros):

●​ Aumento de la Eficiencia Operativa: El beneficio más significativo será la
optimización de la operatividad de la cantina, especialmente durante las horas pico.
Al digitalizar y desacoplar el proceso de pago del proceso de retiro, se elimina el
principal cuello de botella identificado: la congestión en la caja. Esto permitirá
procesar un mayor volumen de pedidos en menos tiempo.

●​ Reducción del Desperdicio Alimentario: La implementación de pedidos
anticipados y planes de comida proporcionará a la administración herramientas para
prever la demanda diaria. Esto permitirá a la cocina planificar de manera más
precisa la cantidad de alimentos a preparar , reduciendo el excedente y el
desperdicio.

●​ Automatización de Tareas Administrativas: El sistema generará automáticamente
resúmenes de compras diarias y mensuales. Esto elimina la necesidad de realizar
cierres de caja y registros manuales, reduciendo la carga de trabajo administrativo y
minimizando errores.

●​ Recuperación de Ventas Perdidas: Se espera un incremento en las ventas al
recapturar a los clientes (estudiantes y docentes) que anteriormente decidían no
comprar debido a las largas filas.

●​ Fidelización de Clientes: La gestión digital de "Planes de Comida" fomenta la
compra anticipada con descuento , asegurando un flujo de ingresos recurrentes y
fomentando la lealtad de los usuarios.

Beneficios Intangibles (Experiencia y Estrategia):

●​ Mejora en la Calidad de Vida del Campus: Se reducirán drásticamente los tiempos
de espera , mejorando la experiencia general de estudiantes y docentes. Esto
permite un uso más eficiente del tiempo de descanso , reduciendo la frustración y la
desmotivación asociadas a las filas.

●​ Mejora en la Toma de Decisiones: Los administradores tendrán acceso a datos
consolidados sobre ventas y productos. Esta información facilitará la toma de
decisiones estratégicas sobre el catálogo de productos y la planificación de la
demanda.

●​ Modernización del Servicio: La implementación de una plataforma digital alinea el
servicio de la cantina con las expectativas modernas de los usuarios, promoviendo la
inclusión digital y mejorando la imagen general del servicio.

73

CONCLUSIÓN

El desarrollo del proyecto ha representado una valiosa y exhaustiva instancia de
aprendizaje integral, permitiéndome no solo abordar, sino también navegar con éxito el ciclo
completo de vida de una aplicación web moderna, desde su concepción y diseño
estratégico hasta su despliegue final en una infraestructura de nube. La experiencia me ha
permitido adquirir y consolidar conocimientos prácticos fundamentales en la orquestación de
un desarrollo complejo, abarcando de manera integrada tanto el frontend, con sus desafíos
de usabilidad y experiencia de usuario, como el backend y la robusta infraestructura en la
nube que lo soporta.

Durante el proceso, una de las reflexiones recurrentes fue la posibilidad de haber construido
una aplicación móvil nativa. Si bien la familiaridad con tecnologías como React Native
habría hecho esta alternativa aún más tentadora, el análisis profundo del contexto de uso
me llevó a la conclusión de que la simplicidad y la accesibilidad de una app web son sus
mayores fortalezas en este caso. La decisión de optar por un sistema fácilmente accesible
mediante un código QR fue una elección estratégica para minimizar la barrera de entrada,
evitando forzar a estudiantes o docentes a buscar, descargar e instalar una aplicación que
podrían utilizar de forma esporádica.

Uno de los aprendizajes técnicos más significativos fue, sin duda, la implementación de una
arquitectura desplegada en Google Cloud Platform. Esta fase del proyecto me brindó una
experiencia práctica invaluable en la configuración y gestión de servicios clave como Cloud
Run para el despliegue escalable de la API y Firestore como base de datos NoSQL en
tiempo real. La elección de esta plataforma, motivada por su escalabilidad y su generosa
capa gratuita, demostró ser una decisión acertada que garantiza la viabilidad económica del
proyecto a largo plazo.

El proyecto se concibió y ejecutó bajo una metodología ágil, guiada estrictamente por
historias de usuario, lo que facilitó un progreso iterativo e incremental. Si bien no se elaboró
un diagrama de Gantt formal, este enfoque aseguró que cada funcionalidad desarrollada
aportará un valor directo al usuario final, proporcionando un marco de trabajo flexible pero
estructurado que dio un orden y una dirección clara a la implementación.

Aunque al momento de redactar este informe el sistema está completamente operativo,
reconozco que el área de testing formal (pruebas unitarias y de integración) no fue un foco
principal. Soy plenamente consciente de que, en un entorno de desarrollo profesional, esta
es un área crucial para garantizar que el valor entregado sea robusto, confiable y
mantenible a futuro.

En retrospectiva, considero que los objetivos planteados al inicio del proyecto fueron
cumplidos satisfactoriamente. Se ha logrado una solución funcional y completa que no solo
resuelve la problemática identificada de las largas filas en la cantina, sino que también se
alinea con los principios de Responsabilidad Social Universitaria al mejorar la calidad de
vida en el campus, promover la inclusión digital y generar un impacto medioambiental
positivo. Este proyecto ha sido mucho más que un ejercicio técnico; me ha preparado para
enfrentar proyectos tecnológicos reales con una visión más completa, estratégica e integral,
entendiendo que la tecnología es una herramienta poderosa para generar valor y mejorar el
entorno que nos rodea.

74

Próximos Pasos

Aunque el sistema actual es completamente funcional, el ciclo de vida de un producto de
software nunca termina. Para asegurar su éxito y sostenibilidad a largo plazo, los siguientes
pasos son fundamentales:

1.​ Reforzar la Seguridad General: Si bien se han implementado prácticas de
seguridad estándar, como la gestión de secretos en GCP, un próximo paso crucial es
realizar una auditoría de seguridad exhaustiva. Esto implicaría reforzar la seguridad
de los endpoints de la API para prevenir vulnerabilidades comunes y asegurar la
protección integral de los datos de los usuarios. Actualmente, Firebase
Authentication se utiliza únicamente para vincular direcciones de correo electrónico
con cuentas de usuario y así permitir guardar el historial de órdenes compradas.
Como mejora futura, se propone que el backend requiera y valide tokens de
Firebase en los endpoints más sensibles (por ejemplo, los relacionados con
pagos, administración o modificaciones de datos críticos). Esto permitirá garantizar
que solo usuarios autenticados puedan acceder a operaciones clave, elevando
significativamente el nivel de seguridad general del sistema.

2.​ Implementar Pruebas Automatizadas: Para garantizar la robustez y facilitar el
mantenimiento futuro, es prioritario desarrollar un conjunto completo de pruebas
unitarias y de integración. Estas pruebas deben integrarse en el flujo de trabajo de
CI/CD con herramientas como GitHub Actions, asegurando que cada nuevo cambio
sea verificado automáticamente antes del despliegue y evitando regresiones en el
código existente.

3.​ Puesta en Producción y Validación Real: El lanzamiento de la aplicación implica
un proceso multifacético que va más allá del simple despliegue técnico. Este
proceso incluye:

●​ Validación del Producto: Permitir que los estudiantes y docentes utilicen la
aplicación en su día a día. Esta etapa es crucial para obtener feedback
directo y validar si la solución realmente cumple con sus expectativas y
resuelve el problema de manera efectiva.

●​ Onboarding de la Cantina: Realizar una capacitación con el personal
administrativo de la cantina para asegurar que puedan utilizar la interfaz de
administración de forma autónoma y eficiente (gestión de productos,
visualización de órdenes, etc.). Este proceso de "onboarding" estaría sujeto a
posibles modificaciones y mejoras, adaptando la herramienta a su flujo de
trabajo real basándose en la retroalimentación de su experiencia de usuario
(UX).

●​ Ciclo de Mejora Continua: Utilizar los datos y comentarios recopilados
durante la puesta en producción para iterar sobre el producto, corrigiendo
errores, mejorando funcionalidades existentes y planificando futuras
características.

4.​ Optimización de Consumos e Imágenes en la Infraestructura: Un siguiente paso
clave será optimizar el uso de los recursos de infraestructura, especialmente los
relacionados con la carga y entrega de imágenes en la aplicación web. Estas
mejoras no solo disminuirán el consumo de ancho de banda y almacenamiento en

75

GCP, sino que también permitirán que Vercel aproveche su caché interna, evitando
solicitudes repetidas de imágenes que no cambian frecuentemente, mejorando así la
velocidad y eficiencia general del sistema.Para ello, se propone:

●​ Optimización de imágenes: Al subir nuevas imágenes desde el frontend
convertirlas a formato WebP desde el backend antenas de subirlas al bucket,
para reducir el peso de los archivos sin comprometer la calidad visual.

●​ Mejorar la Configuración de Google Cloud Storage (GCS):

■​ Establecer en el bucket de GCP encabezados de cacheo prolongado
para imágenes inmutables

■​ Implementar un sistema de versionado en los nombres de archivos
para garantizar que los navegadores actualicen solo las imágenes
modificadas.​

■​ Automatizar la eliminación de versiones antiguas al subir una nueva
imagen, evitando almacenamiento innecesario y reduciendo costos.

5.​ Implementar un Módulo de Reclamos y Reembolsos: Desarrollar una nueva
sección que permita a los usuarios (estudiantes y docentes, según lo solicitado en la
encuesta) generar reclamos. Esto incluye la capacidad de realizar reclamos
genéricos o vincular un reclamo a un order_id específico. El módulo podria contar
con:

●​ Una interfaz de administración para que el personal de la cantina pueda
visualizar y gestionar todos los reclamos entrantes.

●​ Funcionalidad de reembolsos: "Como administrador de la cantina quiero
poder realizar reembolsos a través de la api de mercadopago, para poder
reembolsar una compra por este medio si llegara a pasar algún
inconveniente".

6.​ Desarrollar un Módulo de Analíticas Avanzadas: Crear un nuevo módulo de
reportes: "Como administrador del sistema, quiero poder generar reportes de ventas
y popularidad de productos, para entender mejor qué productos son los más
vendidos y planificar futuras promociones o inventarios". Se evaluará la integración
de herramientas de IA para potenciar estas analíticas.

7.​ Integrar Funcionalidad de WhatsApp Business: Incorporar la API de WhatsApp
para mejorar la accesibilidad y permitir nuevos flujos de usuario:

●​ Permitir a usuarios registrados iniciar sesión con su número de teléfono.

●​ Habilitar compras para usuarios no registrados: El flujo permitiría confirmar el
carrito, enviar el link de pago de Mercado Pago y recibir el resumen de la
compra final a través de WhatsApp. El usuario podría retirar el pedido
presentando el chat, sin necesidad de crear una cuenta.

76

8.​ Implementar un Sistema de Puntos: Diseñar e implementar un sistema de
fidelización basado en puntos, cuya viabilidad y reglas de negocio deberán validarse
con la administración de la cantina.

77

ANEXOS
1.​ Entrevista con la Administración de la Cantina

2.​ Encuesta a usuarios de la cantina - Para acceder deberá pedir acceso - También
se puede ver el excel con las respuestas donde se pueden aplicar distintos filtros y
ver los gráficos con los filtros aplicados

3.​ Caso Gallina Blanca

4.​ Caso PIA

5.​ Google Datacenters

78

https://docs.google.com/document/u/0/d/1yiRd_Kh5DvCYjkbeiY31NPEBzmgXh4Oh4PvMGbb4V94/edit
https://docs.google.com/forms/d/1GkJ3jxVrtnKCTtnvyaqSJTLF-Z-qQEAsM4FJoNu7WOg/edit#responses
https://docs.google.com/spreadsheets/d/1FDuN_pub_tOp6_PKlDBePhvVgNXZ2htAe_JlJlftmmc/edit?gid=4665859#gid=4665859
https://es.slideshare.net/slideshow/caso-de-xito-gallina-blanca-automatiza-sus-pedidos-y-cargos-de-clientes/65501206?utm_source=chatgpt.com
https://2brains.lat/casos/pia-transformando-la-gestion-de-pedidos-en-icb-food-service/?utm_source=chatgpt.com
https://datacenters.google/operating-sustainably/

BIBLIOGRAFÍA
1.​ Chat GPT por consultas y estructuración del texto

2.​ Google Cloud Run Pricing Savings Guide - Pump,
https://www.pump.co/blog/google-cloud-run-pricing

3.​ Firestore pricing - Google Cloud, https://cloud.google.com/firestore/pricing

4.​ Understand Cloud Firestore billing | Firebase
https://firebase.google.com/docs/firestore/pricing

5.​ GCP Storage Pricing - Cost Guide & Savings Strategies - Pump
https://www.pump.co/blog/gcp-storage-pricing

6.​ Google Cloud Storage Pricing: Get the Best Bang for Your Buckets - NetApp BlueXP,
https://bluexp.netapp.com/blog/gcp-cvo-blg-google-cloud-storage-pricing-get-the-best-
bang-for-your-buckets

7.​ Cloud Run | Google Cloud https://cloud.google.com/run#pricing

8.​ Pricing | Cloud Run | Google Cloud https://cloud.google.com/run/pricing/

9.​ How much memory does a spring boot rest api usually consume? : r/SpringBoot -
Reddit
https://www.reddit.com/r/SpringBoot/comments/15gy5jy/how_much_memory_does_a_
spring_boot_rest_api/

10.​Memory management and garbage collection (GC) in ASP.NET Core - Learn Microsoft
https://learn.microsoft.com/en-us/aspnet/core/performance/memory?view=aspnetcore-
9.0

11.​Pricing | Cloud Storage | Google Cloud https://cloud.google.com/storage/pricing

12.​Free cloud features and trial offer | Google Cloud Free Program
https://cloud.google.com/free/docs/free-cloud-features

13.​Free Trial and Free Tier Services and Products - Google Cloud
https://cloud.google.com/free

14.​Google Cloud CDN Pricing & Savings Guide - Pump
https://www.pump.co/blog/google-cloud-cdn-pricing

15.​Fuentes sobre el papel: fundacioncanal.com - Mamá Coca - adoc Studio

16.​Parrot Software. (n.d.). Pros y contras de las aplicaciones de delivery para
restaurantes. Recuperado de
https://parrotsoftware.com.mx/blog/pros-y-contras-de-las-aplicaciones-de-delivery-par
a-restaurantes

17.​Ticksy. (n.d.). Ventajas y desventajas del servicio delivery. Recuperado de
https://ticksy.app/blog/ventajas-y-desventajas-del-servicio-delivery/

79

https://www.pump.co/blog/google-cloud-run-pricing
https://cloud.google.com/firestore/pricing
https://firebase.google.com/docs/firestore/pricing
https://www.pump.co/blog/gcp-storage-pricing
https://bluexp.netapp.com/blog/gcp-cvo-blg-google-cloud-storage-pricing-get-the-best-bang-for-your-buckets
https://bluexp.netapp.com/blog/gcp-cvo-blg-google-cloud-storage-pricing-get-the-best-bang-for-your-buckets
https://cloud.google.com/run#pricing
https://cloud.google.com/run/pricing/
https://www.reddit.com/r/SpringBoot/comments/15gy5jy/how_much_memory_does_a_spring_boot_rest_api/
https://www.reddit.com/r/SpringBoot/comments/15gy5jy/how_much_memory_does_a_spring_boot_rest_api/
https://learn.microsoft.com/en-us/aspnet/core/performance/memory?view=aspnetcore-9.0
https://learn.microsoft.com/en-us/aspnet/core/performance/memory?view=aspnetcore-9.0
https://cloud.google.com/storage/pricing
https://cloud.google.com/free/docs/free-cloud-features
https://cloud.google.com/free
https://www.pump.co/blog/google-cloud-cdn-pricing
https://www.fundacioncanal.com/canaleduca/wp-content/uploads/2015/08/Cuestinario-consumo-indirecto-de-Papel.pdf?utm_source=chatgpt.com
https://www.mamacoca.org/El_Papel_de_la_coca_June_2008/_es/Dossier_El_Papel/VII-Lista_tentativa_para_estimar_costos_produccion_a_escala.htm?utm_source=chatgpt.com
https://www.adoc-studio.app/blog/co2-calculation-paper-manuals?utm_source=chatgpt.com
https://parrotsoftware.com.mx/blog/pros-y-contras-de-las-aplicaciones-de-delivery-para-restaurantes
https://parrotsoftware.com.mx/blog/pros-y-contras-de-las-aplicaciones-de-delivery-para-restaurantes
https://parrotsoftware.com.mx/blog/pros-y-contras-de-las-aplicaciones-de-delivery-para-restaurantes
https://ticksy.app/blog/ventajas-y-desventajas-del-servicio-delivery/
https://ticksy.app/blog/ventajas-y-desventajas-del-servicio-delivery/

18.​ClickUp. (n.d.). Los 10 mejores programas de gestión alimentaria. Recuperado de
https://clickup.com/es-ES/blog/436583/software-de-gestion-alimentaria

19.​Vev. (n.d.). Los mejores software de entrega de comida a domicilio. Recuperado de
https://vev.co/es/blog/los-mejores-software-de-entrega-de-comida-a-domicilio

20.​Catalogo de Software. (n.d.). Software para restaurantes. Recuperado de
https://www.catalogodesoftware.com/software/software-hospitales-pos-servicios-turis
mo-restaurantes/software-hoteles-bares-restaurantes-bogota-colombia/sistema-restau
rantes-bogota-colombia-tns

21.​Square. (n.d.). Software de Square KDS sin costo adicional. Recuperado de
https://squareup.com/us/es/point-of-sale/restaurants

22.​Aplyca. (n.d.). Next.js: El futuro web. Recuperado de
https://www.aplyca.com/blog/nextjs-el-futuro-web-que-es-nextjs

23.​10code. (n.d.). ¿Qué Es Next.js y Cuál Es Su Propósito? Recuperado de
https://10code.es/nextjs-que-es/

24.​Solbyte. (n.d.). React JS: Ventajas e inconvenientes. Recuperado de
https://www.solbyte.com/blog/react-js-ventajas-e-inconvenientes/

25.​Serverspace. (n.d.). React.js: ventajas, desventajas y casos de uso. Recuperado de
https://serverspace.io/es/about/blog/review-of-the-react-js-framework-advantages-disa
dvantages-and-use-cases/

26.​The Codest. (n.d.). Pros y contras de Vue.js. Recuperado de
https://thecodest.co/es/blog/pros-y-contras-de-vue/

27.​Rootstack. (n.d.). VueJS: Ventajas y desventajas de este framework. Recuperado de
https://rootstack.com/es/blog/vuejs-ventajas-desventajas

28.​Discrat. (n.d.). Ventajas y Desventajas del responsive design. Recuperado de
https://www.discrat.com.ar/ventajas-y-desventajas-del-diseno-adaptativo/

29.​ESIC. (n.d.). Angular: Qué es, para qué sirve y ventajas. Recuperado de
https://www.esic.edu/rethink/tecnologia/angular-que-es-para-que-sirve-y-ventajas-c

30.​FastAPI. (n.d.). Características. Recuperado de https://fastapi.tiangolo.com/es/

31.​IronPDF. (n.d.). FastAPI Python. Recuperado de
https://ironpdf.com/es/python/blog/compare-to-other-components/fastapi-python/

32.​Scribd. (n.d.). Django Rest Framework. Recuperado de
https://es.scribd.com/document/538658165/Django-Rest-Framework

33.​Django REST Framework. (n.d.). API Guide: Views. Recuperado de
https://www.django-rest-framework.org/api-guide/views/

34.​Apuntes.de. (n.d.). Desarrollo de una API REST con Flask en Python. Recuperado de
https://apuntes.de/python/desarrollo-de-una-api-rest-con-flask-en-python-creacion-de-
una-interfaz-de-programacion-de-aplicaciones-restful/

80

https://clickup.com/es-ES/blog/436583/software-de-gestion-alimentaria
https://clickup.com/es-ES/blog/436583/software-de-gestion-alimentaria
https://vev.co/es/blog/los-mejores-software-de-entrega-de-comida-a-domicilio
https://vev.co/es/blog/los-mejores-software-de-entrega-de-comida-a-domicilio
https://www.catalogodesoftware.com/software/software-hospitales-pos-servicios-turismo-restaurantes/software-hoteles-bares-restaurantes-bogota-colombia/sistema-restaurantes-bogota-colombia-tns
https://www.catalogodesoftware.com/software/software-hospitales-pos-servicios-turismo-restaurantes/software-hoteles-bares-restaurantes-bogota-colombia/sistema-restaurantes-bogota-colombia-tns
https://www.catalogodesoftware.com/software/software-hospitales-pos-servicios-turismo-restaurantes/software-hoteles-bares-restaurantes-bogota-colombia/sistema-restaurantes-bogota-colombia-tns
https://www.catalogodesoftware.com/software/software-hospitales-pos-servicios-turismo-restaurantes/software-hoteles-bares-restaurantes-bogota-colombia/sistema-restaurantes-bogota-colombia-tns
https://squareup.com/us/es/point-of-sale/restaurants
https://squareup.com/us/es/point-of-sale/restaurants
https://www.aplyca.com/blog/nextjs-el-futuro-web-que-es-nextjs
https://www.aplyca.com/blog/nextjs-el-futuro-web-que-es-nextjs
https://10code.es/nextjs-que-es/
https://10code.es/nextjs-que-es/
https://www.solbyte.com/blog/react-js-ventajas-e-inconvenientes/
https://www.solbyte.com/blog/react-js-ventajas-e-inconvenientes/
https://serverspace.io/es/about/blog/review-of-the-react-js-framework-advantages-disadvantages-and-use-cases/
https://serverspace.io/es/about/blog/review-of-the-react-js-framework-advantages-disadvantages-and-use-cases/
https://serverspace.io/es/about/blog/review-of-the-react-js-framework-advantages-disadvantages-and-use-cases/
https://thecodest.co/es/blog/pros-y-contras-de-vue/
https://thecodest.co/es/blog/pros-y-contras-de-vue/
https://rootstack.com/es/blog/vuejs-ventajas-desventajas
https://rootstack.com/es/blog/vuejs-ventajas-desventajas
https://www.discrat.com.ar/ventajas-y-desventajas-del-diseno-adaptativo/
https://www.discrat.com.ar/ventajas-y-desventajas-del-diseno-adaptativo/
https://www.esic.edu/rethink/tecnologia/angular-que-es-para-que-sirve-y-ventajas-c
https://www.esic.edu/rethink/tecnologia/angular-que-es-para-que-sirve-y-ventajas-c
https://fastapi.tiangolo.com/es/
https://ironpdf.com/es/python/blog/compare-to-other-components/fastapi-python/
https://ironpdf.com/es/python/blog/compare-to-other-components/fastapi-python/
https://es.scribd.com/document/538658165/Django-Rest-Framework
https://es.scribd.com/document/538658165/Django-Rest-Framework
https://www.django-rest-framework.org/api-guide/views/
https://www.django-rest-framework.org/api-guide/views/
https://apuntes.de/python/desarrollo-de-una-api-rest-con-flask-en-python-creacion-de-una-interfaz-de-programacion-de-aplicaciones-restful/
https://apuntes.de/python/desarrollo-de-una-api-rest-con-flask-en-python-creacion-de-una-interfaz-de-programacion-de-aplicaciones-restful/
https://apuntes.de/python/desarrollo-de-una-api-rest-con-flask-en-python-creacion-de-una-interfaz-de-programacion-de-aplicaciones-restful/

35.​Certidevs. (n.d.). Tutorial Flask API REST GET. Recuperado de
https://certidevs.com/tutorial-flask-api-rest-get

36.​Hostinger. (n.d.). ¿Qué es Node.js? Recuperado de
https://www.hostinger.com/es/tutoriales/que-es-node-js

37.​Startechup. (n.d.). Node.js vs Express.js: Características y Ventajas. Recuperado de
https://www.startechup.com/es/blog/tospanish/

38.​Geekflare. (n.d.). AWS vs. Azure vs. Google Cloud. Recuperado de
https://geekflare.com/es/aws-vs-azure-vs-google-cloud/

39.​Docker. (n.d.). Docker Hub. Recuperado de
https://www.docker.com/products/docker-hub/

40.​Palo Alto Networks. (n.d.). ¿Qué es el ciclo de CI/CD? Recuperado de
https://www.paloaltonetworks.es/cyberpedia/what-is-the-ci-cd-pipeline-and-ci-cd-securi
ty

41.​GitHub. (n.d.). What is CI/CD? Recuperado de
https://github.com/resources/articles/devops/ci-cd

42.​GitHub. (n.d.). Getting started with GitHub Actions. Recuperado de
https://docs.github.com/articles/getting-started-with-github-actions

81

https://certidevs.com/tutorial-flask-api-rest-get
https://certidevs.com/tutorial-flask-api-rest-get
https://www.hostinger.com/es/tutoriales/que-es-node-js
https://www.hostinger.com/es/tutoriales/que-es-node-js
https://www.startechup.com/es/blog/tospanish/
https://www.startechup.com/es/blog/tospanish/
https://geekflare.com/es/aws-vs-azure-vs-google-cloud/
https://geekflare.com/es/aws-vs-azure-vs-google-cloud/
https://www.docker.com/products/docker-hub/
https://www.docker.com/products/docker-hub/
https://www.paloaltonetworks.es/cyberpedia/what-is-the-ci-cd-pipeline-and-ci-cd-security
https://www.paloaltonetworks.es/cyberpedia/what-is-the-ci-cd-pipeline-and-ci-cd-security
https://www.paloaltonetworks.es/cyberpedia/what-is-the-ci-cd-pipeline-and-ci-cd-security
https://github.com/resources/articles/devops/ci-cd
https://github.com/resources/articles/devops/ci-cd
https://docs.github.com/articles/getting-started-with-github-actions
https://docs.github.com/articles/getting-started-with-github-actions

	
	ÍNDICE
	
	
	RESUMEN - ABSTRACT
	Español
	English

	PRESENTACIÓN DEL TEMA
	GLOSARIO
	DIAGNÓSTICO (PROBLEMÁTICA)
	Estado del Arte
	Impacto
	Para los estudiantes y docentes:
	Para la administración de la cantina:

	OBJETIVOS
	Objetivo Global
	Objetivos Específicos

	MARCO TEÓRICO
	1. Contexto General del Problema
	2. Análisis de Campo
	2.1. Perspectiva de la Administración: La Entrevista Clave
	2.2. Percepción de los Usuarios: Encuesta de Validación
	2.3. Conclusión del Análisis

	3. Opciones Similares en el Mercado
	El Vacío que Cantina UCC Busca Llenar:

	4. Tecnologías Investigadas
	Frontend | UI
	Next.js:
	React.js:
	Vue.js:
	Angular:

	Backend
	FastAPI:
	Django:
	Flask:
	Node.js (Express.js):
	Go (Gin Gonic):

	
	Despliegue y Servicios en la Nube:
	AWS (Amazon Web Services):
	Google Cloud Platform (GCP):
	Microsoft Azure:

	Herramientas de Integración y Despliegue Continuo (CI/CD)
	Jenkins
	GitHub Actions
	GitLab CI/CD

	Plataformas de Pago en el Ecosistema Argentino (Opciones para integrar pagos online)
	Criterios de Evaluación

	
	Infraestructura para la Comunicación Transaccional por Correo Electrónico
	Impacto en la Operativa

	Estrategias de Pruebas del Sistema
	Pruebas Unitarias
	Pruebas de Integración
	Pruebas de Aceptación de Usuario (UAT)
	Pruebas Funcionales

	
	PROPUESTA DE SOLUCIÓN
	1 Alcance Funcional
	Historias de usuario:
	Usuarios Invitados (sin cuenta)
	Usuario Registrado (extiende usuario invitado)
	Administradores de la cantina:

	Lo que está incluido en el Alcance Funcional:
	Lo que queda fuera del Alcance Funcional:

	2 Diseño
	Pantallas
	En el frontend de la cantina (para clientes)
	En el frontend de administración (para los administradores de la cantina)

	Diagramas
	Tecnologías elegidas
	Frontend: Next.js
	Backend: FastAPI con Python
	Despliegue y Servicios en la Nube: Google Cloud Platform (GCP)
	Integración y Despliegue Continuo: GitHub Actions y Docker Hub
	Plataforma de pagos

	Arquitectura
	1. Arquitectura General
	2. Componentes Principales de la Arquitectura en detalle
	3. Diagrama de la Arquitectura
	4. Modelo de Comunicación
	5. Consideraciones de Escalabilidad y Seguridad

	3 Implementación
	Despliegue inicial
	Desarrollo basado en historias de usuario

	4 Pruebas
	Casos de Prueba Funcionales:
	Aclaración sobre el Entorno de Pruebas
	Otras aclaraciones

	
	IMPACTO ECONÓMICO
	1. Metodología y Supuestos Clave
	Escenarios Definidos:
	Pila de Infraestructura:
	Estimación de uso por compra
	Consumo GCP por Compra:
	Uso de Vercel (frontend):
	Firebase Authentication
	Comisiones de Mercado Pago
	Consumo amazon SES por Compra

	2. Análisis de Costos Estimados por Componente
	Costos de GCP (us-central1)
	Escenario de Consumo Bajo (3k Compras/Mes)
	Escenario de Consumo Medio (30k Compras/Mes)
	Escenario de Consumo Alto (150k Compras/Mes)
	Corrección del 3er escenario

	Costos de Vercel
	Costos de Mercadopago
	Costos de Amazon SES
	 Emails por compra

	4. Análisis Costo-Beneficio Conciso
	5. Para tener en cuenta
	6. Resumen de Resultados y Conclusión Final

	
	RSU
	IMPACTO SOCIAL
	Beneficio o Impacto Positivo General
	Segmentos de la Población Beneficiados
	Inclusión y Reducción de Brechas

	IMPACTO MEDIOAMBIENTAL
	Eliminación de tickets impresos
	Concientización sobre la eliminación de tickets impresos
	Reducción del desperdicio alimentario
	Infraestructura sustentable

	BENEFICIOS POST IMPLEMENTACIÓN
	Beneficios Tangibles (Operativos y Financieros):
	Beneficios Intangibles (Experiencia y Estrategia):

	CONCLUSIÓN
	Próximos Pasos

	
	ANEXOS
	1.​Entrevista con la Administración de la Cantina
	2.​Encuesta a usuarios de la cantina - Para acceder deberá pedir acceso - También se puede ver el excel con las respuestas donde se pueden aplicar distintos filtros y ver los gráficos con los filtros aplicados
	3.​Caso Gallina Blanca
	4.​Caso PIA
	5.​Google Datacenters

	BIBLIOGRAFÍA

