DE CORDOBA Bibliotecas

JEBUITAS

UNIVERSIDAD | . . ;
CATOLICA Bkl PRODUCCION ACADEMICA

Goémez Pizarro, Gonzalo

Informe de Proyecto
Integrador - Cantina UCC

Tesis para la obtenciéon del titulo de
grado de Ingenieria de Sistemas

Directores:
Porrini, Federico Eduardo
Carreno, Ignacio Luciano

Di Marco, Octavio

Documento disponible para su consulta y descarga en Biblioteca Digital - Producciéon
Académica, repositorio institucional de la Universidad Catdlica de Cérdoba, gestionado por el

Sistema de Bibliotecas de |la UCC.

Esta obra esta bajo una licencia de Creative Commons Reconocimiento- No Comercial 4.0

Internacional.

https://creativecommons.org/licenses/by-nc/4.0/deed.es
https://creativecommons.org/licenses/by-nc/4.0/deed.es

Universidad Catolica de Cordoba
Facultad de Ingenieria

Proyecto: Cantina UCC

UNIVERSIDAD

CATOLICA
4R OF CORDOBA

JESUITAS

Informe Final de Grado
Alumnos:
e Gobmez Pizarro, Gonzalo
Directores:

e Porrini, Federico Eduardo
e Carrefio, Ignacio Luciano
e Di Marco, Octavio

xxx de <mes> de 2025

Cordoba - Argentina

INDICE

iNDICE
RESUMEN - ABSTRACT
Espaniol
English
PRESENTACION DEL TEMA
GLOSARIO
DIAGNOSTICO (PROBLEMATICA)
Estado del Arte
Impacto
Para los estudiantes y docentes:
Para la administracion de la cantina:
OBJETIVOS
Objetivo Global
Objetivos Especificos
MARCO TEORICO
1. Contexto General del Problema
2. Analisis de Campo
2.1. Perspectiva de la Administracion: La Entrevista Clave
2.2. Percepcion de los Usuarios: Encuesta de Validacion
2.3. Conclusién del Analisis
3. Opciones Similares en el Mercado
El Vacio que Cantina UCC Busca Llenar:
4. Tecnologias Investigadas
Frontend | Ul
Next.js:
React.js:
Vue.js:
Angular:
Backend
FastAPI:
Django:
Flask:
Node.js (Express.js):
Go (Gin Gonic):
Despliegue y Servicios en la Nube:
AWS (Amazon Web Services):
Google Cloud Platform (GCP):
Microsoft Azure:
Herramientas de Integracion y Despliegue Continuo (CI/CD)
Jenkins
GitHub Actions

© 0 O O ODN

10

10
10
10
12
12
12
13
13
13
13
14
15
15
16
17
17
18
18
19
19
20
21
21
21
22
22
23
23
24
24
25
25
26

GitLab CI/CD

Plataformas de Pago en el Ecosistema Argentino (Opciones para integrar pagos

online)
Criterios de Evaluacion
Infraestructura para la Comunicacién Transaccional por Correo Electrénico
Impacto en la Operativa
Estrategias de Pruebas del Sistema
Pruebas Unitarias
Pruebas de Integracion
Pruebas de Aceptacion de Usuario (UAT)
Pruebas Funcionales
PROPUESTA DE SOLUCION
1 Alcance Funcional
Historias de usuario:
Usuarios Invitados (sin cuenta)
Usuario Registrado (extiende usuario invitado)
Administradores de la cantina:
Lo que esta incluido en el Alcance Funcional:
Lo que queda fuera del Alcance Funcional:
2 Diseino
Pantallas
En el frontend de la cantina (para clientes)
En el frontend de administracion (para los administradores de la cantina)
Diagramas
Tecnologias elegidas
Frontend: Next.js
Backend: FastAPI con Python
Despliegue y Servicios en la Nube: Google Cloud Platform (GCP)
Integracion y Despliegue Continuo: GitHub Actions y Docker Hub
Plataforma de pagos
Arquitectura
1. Arquitectura General
2. Componentes Principales de la Arquitectura en detalle
3. Diagrama de la Arquitectura
4. Modelo de Comunicacion
5. Consideraciones de Escalabilidad y Seguridad
3 Implementacion
Despliegue inicial
Desarrollo basado en historias de usuario
4 Pruebas
Casos de Prueba Funcionales:
Aclaracion sobre el Entorno de Pruebas
Otras aclaraciones
IMPACTO ECONOMICO

26

27
27
29
29
31
31
31
32
32
34
34
34
34
34
34
35
35
35
35
35
36
36
43
43
43
43
44
44
45
45
46
47
47
48
49
49
49
49
50
53
53
55

1. Metodologia y Supuestos Clave 55

Escenarios Definidos: 55

Pila de Infraestructura: 55
Estimacion de uso por compra 55
Consumo GCP por Compra: 55

Uso de Vercel (frontend): 58

Firebase Authentication 59
Comisiones de Mercado Pago 59

Consumo amazon SES por Compra 59

2. Analisis de Costos Estimados por Componente 59
Costos de GCP (us-central1) 59
Escenario de Consumo Bajo (3k Compras/Mes) 60

Escenario de Consumo Medio (30k Compras/Mes) 61

Escenario de Consumo Alto (150k Compras/Mes) 62
Correccion del 3er escenario 63

Costos de Vercel 64
Costos de Mercadopago 64
Costos de Amazon SES 65

Emails por compra 65

4. Analisis Costo-Beneficio Conciso 65

5. Para tener en cuenta 66

6. Resumen de Resultados y Conclusion Final 66
RSU 68
IMPACTO SOCIAL 69
Beneficio o Impacto Positivo General 69
Segmentos de la Poblacién Beneficiados 69
Inclusion y Reduccién de Brechas 69
IMPACTO MEDIOAMBIENTAL 70
Eliminacion de tickets impresos 70
Concientizacion sobre la eliminacién de tickets impresos 71
Reduccién del desperdicio alimentario 71
Infraestructura sustentable 71
BENEFICIOS POST IMPLEMENTACION 73
Beneficios Tangibles (Operativos y Financieros): 73
Beneficios Intangibles (Experiencia y Estrategia): 73
CONCLUSION 74
Préximos Pasos 75
ANEXOS 78
1. Entrevista con la Administracion de la Cantina 78

2. Encuesta a usuarios de la cantina - Para acceder debera pedir acceso - También
se puede ver el excel con las respuestas donde se pueden aplicar distintos filtros y

ver los graficos con los filtros aplicados 78
3. Caso Gallina Blanca 78
4. Caso PIA 78

5. Google Datacenters
BIBLIOGRAFIA

78
79

RESUMEN - ABSTRACT

Espanol

Este proyecto de grado aborda la problematica de las largas filas y los tiempos de espera en
la cantina de la Universidad Catdlica de Cérdoba (UCC), que afectan negativamente la
experiencia de estudiantes y docentes. Para resolverlo, se desarroll6 una aplicacion web
responsive con el objetivo de optimizar integralmente el proceso de compra y gestién de
pedidos. A lo largo de este informe, se detalla cada fase del proyecto, desde el diagndstico
inicial y la definicion de objetivos hasta la implementacién técnica y el analisis de sus
impactos.

El documento comienza presentando el marco tedrico que sustenta la solucién, incluyendo
un analisis de campo con la administracién de la cantina y un sondeo de la percepcion de
los usuarios, asi como un estudio de soluciones similares en el mercado y las tecnologias
evaluadas. Posteriormente, se expone la propuesta de solucién, describiendo el alcance
funcional a través de historias de usuario, el disefio de la interfaz y la arquitectura de
microservicios elegida. Esta arquitectura, desplegada en Google Cloud Platform (GCP),
utiliza servicios clave como Firestore, Cloud Run y Cloud Storage, con un frontend
desarrollado en Next.js y un backend en Python con FastAPI.

Como resultado, se obtuvo una plataforma completamente funcional que permite a los
usuarios realizar compras anticipadas y gestionar planes de comida, mientras que los
administradores pueden gestionar productos, érdenes y resumenes de ventas. Finalmente,
el informe analiza en profundidad el impacto multidimensional del proyecto:

e Impacto Econdmico: Se presenta un analisis detallado de los costos operativos bajo
diferentes escenarios de uso, demostrando la viabilidad y escalabilidad del sistema.

e Impacto Social y RSU: Se explora como la solucion se alinea con los principios de
Responsabilidad Social Universitaria, mejorando la calidad de vida en el campus.

e Impacto Medioambiental: Se cuantifica el beneficio ecoldgico derivado de la
eliminacion de tickets impresos y la reduccion del desperdicio de alimentos.

En su conjunto, este documento no solo presenta la resolucion de una necesidad operativa,
sino que también sirve como una guia completa del ciclo de vida del desarrollo de una
aplicacion web moderna, evaluando sus efectos desde una perspectiva integral.

English

This final degree project addresses the problem of long queues and waiting times at the
Catholic University of Cordoba (UCC) canteen, which negatively affects the experience of
students and faculty. To solve this, a responsive web application was developed to
comprehensively optimize the purchasing and order management process. Throughout this
report, each phase of the project will be detailed, from the initial diagnosis and objective
definition to the technical implementation and analysis of its impacts.

The document begins by presenting the theoretical framework that supports the solution,

6

including a field analysis with the canteen's administration and a survey of user perceptions,
as well as a study of similar market solutions and the technologies evaluated. Subsequently,
the proposed solution is presented, describing the functional scope through user stories, the
interface design, and the chosen microservices architecture. This architecture, deployed on
Google Cloud Platform (GCP), utilizes key services such as Firestore, Cloud Run, and Cloud
Storage, with a frontend developed in Next.js and a backend in Python with FastAPI.

The result is a fully functional platform that allows users to make advance purchases and
manage meal plans, while administrators can manage products, orders, and sales
summaries. Finally, the report thoroughly analyzes the multidimensional impact of the
project:

e Economic Impact: A detailed analysis of operating costs under different usage
scenarios is presented, demonstrating the system's viability and scalability.

e Social Impact and USR: It explores how the solution aligns with the principles of
University Social Responsibility, improving the quality of life on campus.

e Environmental Impact: The ecological benefit derived from eliminating printed tickets
and reducing food waste is quantified.

As a whole, this document not only presents the resolution of an operational need but also
serves as a comprehensive guide to the lifecycle of modern web application development,
evaluating its effects from an integral perspective.

PRESENTACION DEL TEMA

El proyecto Cantina UCC nace de una necesidad tangible y cotidiana observada en el
corazén de la vida universitaria: las extensas filas y los prolongados tiempos de espera en la
cantina de la Universidad Catdlica de Cordoba (UCC), particularmente durante las horas
pico del almuerzo. Esta problematica fue identificada de primera mano por un miembro del
equipo, quien experimentd como esta ineficiencia afectaba negativamente la experiencia de
estudiantes y docentes, consumiendo una parte valiosa de su tiempo de descanso y estudio.

En su concepcion inicial, el proyecto buscaba ser una solucion directa y enfocada: agilizar el
proceso de compra de los menus diarios para reducir las demoras. Sin embargo, un analisis
mas profundo durante la fase de planificacién reveld una oportunidad mucho mayor.
Desarrollar un sistema para optimizar las compras no solo resolveria el problema de las
filas, sino que, sin afadir una complejidad excesiva, podria sentar las bases para una
modernizacion integral del servicio.

De esta manera, Cantina UCC evolucioné de ser una simple herramienta de gestién de
pedidos a una propuesta de valor completa. El objetivo se expandié para transformar la
operatividad de la cantina, ofreciendo una plataforma digital que no solo optimiza los
tiempos, sino que también mejora la planificacion de la demanda, introduce nuevas
modalidades como los "Planes de Comida" y digitaliza el proceso de pago. El proyecto se
convierte asi en una solucién integral que busca modernizar el servicio, brindando una
experiencia mas eficiente, comoda y accesible tanto para la comunidad universitaria como
para los administradores del servicio.

GLOSARIO

Proveedores de la cantina: La Universidad Catdlica de Coérdoba terceriza el servicio de la
cantina, por lo que los proveedores pueden cambiar con el tiempo y deberan adaptarse al
uso del sistema. La idea es que la adaptacion sea sencilla y comprensible, para que el
sistema siga siendo utilizado de manera efectiva a lo largo de los anos.

Planes de Comida: Sistema que permite a los usuarios la compra anticipada de menus
con descuento, fomentando la fidelizacion de clientes. Los administradores pueden crear y
gestionar estos planes , y los usuarios pueden adquirirlos y utilizarlos a través de la
aplicacion.

Pedido Anticipado: Funcionalidad principal de la aplicacion que permite a los usuarios
realizar y pagar sus pedidos con antelacién. Esto tiene como objetivo reducir las filas y los
tiempos de espera en la cantina, mejorando la experiencia del usuario.

Usuario Invitado: Término para un usuario que navega por la aplicacion sin registrarse.
Este tipo de usuario puede explorar el catalogo de productos y agregarlos al carrito de
compras.

Usuario Registrado: Usuario que ha creado una cuenta en la aplicacion, ya sea mediante
correo electrénico o una cuenta de Google. Este nivel de acceso permite realizar compras,
gestionar planes de comida y ver el historial de pedidos.

PreOrden: Registro temporal de un pedido que se crea antes de que el pago sea
confirmado. Una vez que el pago se realiza con éxito, la informacién de la "PreOrden" se
transfiere a una orden definitiva y la "PreOrden" se elimina. Las "PreOrdenes" no pagadas
se eliminan diariamente.

DIAGNOSTICO (PROBLEMATICA)

Estado del Arte

En la Universidad Catdlica de Cérdoba (UCC), la cantina cumple un rol fundamental al
proveer alimentos y bebidas a estudiantes, docentes y personal administrativo. Sin
embargo, durante los horarios de mayor afluencia, especialmente al mediodia, el servicio se
ve afectado por largas filas y tiempos de espera prolongados. Este problema se debe a la
acumulacién de pedidos simultaneos y al proceso de pago manual, lo que ralentiza la
atencion y genera congestion en el area de la cantina.

Actualmente, los usuarios deben realizar su compra de manera presencial, seleccionando
su menu, esperando en fila para realizar el pago y luego retirando su pedido. Esta dinamica
genera demoras que afectan la experiencia del usuario, ya que gran parte de su tiempo de
descanso se pierde en la espera. En particular, los estudiantes que cuentan con recreos
cortos (por ejemplo, de 20 minutos) muchas veces no tienen tiempo suficiente para hacer la
fila, lo que los obliga a optar por no comprar en la cantina o a llegar tarde a sus clases. Sin
embargo, si pudieran encargar y pagar su pedido con anticipacién, tendrian la posibilidad de
retirarlo rapidamente al comienzo de su recreo y disponer del tiempo suficiente para comer
con tranquilidad.

Si bien existen soluciones digitales en el mercado para la gestion de pedidos y pagos en
comercios gastronémicos, la cantina de la UCC aun no cuenta con una plataforma que
facilite este proceso. La implementacion de un sistema digital podria representar una
oportunidad significativa para optimizar la operaciéon, modernizar el servicio y mejorar la
satisfaccién de los clientes.

Impacto

La situacion actual genera diversas consecuencias que afectan tanto a los clientes como a
la administracion de la cantina:

Para los estudiantes y docentes:

e Pérdida de tiempo en filas extensas, reduciendo el tiempo efectivo de descanso o
estudio.

e Frustracion y desmotivacion al tener que esperar largos periodos sélo para comprar
un almuerzo.

e Imposibilidad de comprar comida en la cantina para aquellos con recreos cortos, ya
qgue no tienen tiempo suficiente para hacer la fila.

e Limitaciones en la disponibilidad de ciertos productos debido a la alta demanda
concentrada en poco tiempo.

Para la administracion de la cantina:

e Dificultad en la gestion eficiente de los pedidos en momentos de alta demanda.

10

e Posible disminucién en las ventas debido a clientes que deciden no comprar por la
espera prolongada.

e Falta de herramientas para monitorear y prever la demanda de ciertos productos.

Ante esta problematica, surge la necesidad de implementar una solucién tecnolégica que
permita agilizar el proceso de compra y pago, mejorando la experiencia de los usuarios y
optimizando la operatividad de la cantina. Un sistema de pedidos anticipados permitiria que
los estudiantes con poco tiempo disponible puedan simplemente retirar su pedido sin

necesidad de hacer filas, haciendo que la experiencia de compra sea mucho mas eficiente y
accesible.

11

OBJETIVOS
Objetivo Global

Desarrollar una web app responsive que optimice la gestién y compra en la cantina de la
Universidad Catdlica de Cérdoba, permitiendo a los usuarios realizar pedidos y pagos de
manera anticipada. De esta forma, se busca reducir los tiempos de espera, mejorar la
eficiencia operativa del servicio y brindar una experiencia mas agil y accesible tanto para
estudiantes y docentes como para la administracion de la cantina.

Objetivos Especificos

"4 Desarrollar una interfaz para que el cliente pueda explorar, elegir y comprar los
productos ofrecidos por la cantina, comprar planes de comida y hacer uso de los mismos
y ver el estado de sus érdenes

"4 Disefiar e implementar una interfaz intuitiva y facil de usar, asegurando una
experiencia optima para clientes y administradores.

{74 Desarrollar un sistema de administracién que permita la gestién de pedidos, productos,
planes de comidas y resimenes de compras diarias.

("4 Integrar una pasarela de pago, para que los usuarios puedan realizar compras de
manera rapida y segura sin necesidad de pagar en efectivo.

12

MARCO TEORICO

El presente Marco Tedrico aborda la problematica de las largas filas en la cantina de la
Universidad Catélica de Cérdoba (UCC) durante los horarios de almuerzo. Esta situacion
afecta negativamente la experiencia de estudiantes y docentes, generando demoras y
disminuyendo la eficiencia del servicio. A continuacién, se exploran diversos aspectos
relacionados con esta problematica, incluyendo el contexto general, analisis de campo,
opciones similares en el mercado y un andlisis de algunas posibles tecnologias sobre las
gue se implementaria el sistema.

1. Contexto General del Problema

La eficiencia en los sistemas de prestacidon de servicios es un campo de estudio
fundamental en la gestién de operaciones. Un fendmeno central en este ambito es la
gestidn de colas de espera, cuya optimizacion impacta directamente en la percepcion de
calidad del servicio y la satisfaccion del cliente. En entornos con picos de demanda
concentrados en breves periodos, como los servicios de alimentacion universitarios, la
formacion de largas filas no es solo una molestia, sino un cuello de botella operativo que
degrada la experiencia del usuario y puede generar pérdidas econémicas.

Desde una perspectiva tedrica, este problema se analiza a través de la Teoria de Colas, que
modela los conflictos entre la demanda de un servicio y la capacidad para proveerlo. Una
gestion ineficiente, basada en procesos manuales y secuenciales (seleccionar, pagar,
retirar), maximiza los tiempos de espera y reduce el rendimiento del sistema. Esta
ineficiencia es particularmente critica en contextos donde el tiempo del usuario es un
recurso escaso y no renovable, como lo es el receso entre clases para un estudiante.

La solucién a esta problematica se encuentra en la transformacioén digital de los procesos de
servicio. La implementacion de sistemas de pedidos anticipados representa un cambio de
paradigma: se transita de un modelo reactivo, donde el servicio comienza cuando el cliente
llega, a un modelo proactivo, donde la orden se gestiona antes del pico de demanda. Esta
estrategia no solo optimiza el flujo de trabajo interno, sino que fundamentalmente desacopla
el proceso de pago y decision del proceso de retiro, eliminando las principales causas de
congestion y redefiniendo la experiencia del cliente hacia un modelo mas agil y eficiente.

2. Analisis de Campo

Se realizé un andlisis de campo breve centrado en los dos actores principales del
ecosistema de la cantina: la administracion y los usuarios finales (estudiantes y docentes).
Este enfoque dual permiti6 obtener una comprensién integral de las necesidades y
expectativas desde ambas perspectivas.

2.1. Perspectiva de la Administraciéon: La Entrevista Clave
Se llevd a cabo una entrevista directa con el administrador de la cantina de la UCC, una

accion fundamental que proporciond una vision interna y detallada de la operacion actual.
Durante la conversacion, el administrador validé el diagnéstico del equipo, reconociendo

13

que la congestidén se debe al proceso manual y simultdneo de pedido y pago, que crea un
"cuello de botella" y ralentiza el servicio.

El administrador mostré un claro interés en la adopcién de un sistema de pedidos
anticipados , pero establecié un requisito critico y no negociable para su viabilidad: la
garantia total de la recepcion efectiva del pago antes de que el personal comience a
procesar cualquier pedido. Esta condicion, mas que una simple preferencia, se presenté
como un pilar fundamental para la implementacion del sistema.

Ante esta exigencia, el equipo explicdé que existen mecanismos técnicos que permiten
validar automaticamente los pagos antes de liberar los pedidos. Por ejemplo, mediante la
comunicacion (via webhook) entre la plataforma de cobro y el sistema de gestion. La
referencia a estos mecanismos no implicé una decisién tecnologica en esta etapa, sino que
respondio a la necesidad de ilustrar al cliente sobre la viabilidad de su requerimiento.

Adicionalmente, el administrador especificO otros requisitos operativos esenciales para
adaptar la solucién a su flujo de trabajo:

e La necesidad de que el sistema genere automaticamente informes diarios de
compras y montos para facilitar el registro de movimientos y el cierre de caja.

e La funcionalidad de poder imprimir los tickets (comandas) de los pedidos
confirmados para ser procesados por la cocina.

Finalmente, se sonded la idea de implementar "Planes de Comida" para la compra
anticipada de multiples menus con descuento. El administrador acogié esta propuesta
positivamente, indicando que se alineaba con las practicas de descuento actuales del
negocio y que digitalizar su gestidén representaria una mejora significativa.

Ver Anexo 1

2.2. Percepcion de los Usuarios: Encuesta de Validacion

Para validar cuantitativamente la problematica diagnosticada y medir la aceptacién de una
potencial solucién digital, se realizd una encuesta formal dirigida a la comunidad
universitaria, la cual obtuvo un total de 224 respuestas. Los resultados no solo confirman la
necesidad de una intervencion, sino que dimensionan la magnitud del problema.

El problema de las filas es una experiencia generalizada y medible. Un 71,7% de los
encuestados afirmoé haber hecho fila por mas de 10 minutos en la cantina para cualquier tipo
de compra (por lo menos alguna vez). Al analizar especificamente el proceso del almuerzo
(entre quienes consumen), los tiempos de espera percibidos son significativos: un 37,1%
reporta una espera de 10 minutos, un 13,2% de 15 minutos y un 1.8% de mas de 20
minutos. Esto indica que para el 52,1% de los consumidores de almuerzos, el proceso
completo demanda 10 minutos o mas. Al ponderar los tiempos de espera segun su
probabilidad reportada en la encuesta, se obtiene una demora promedio de 8,2 minutos
por comida.

Estas demoras tienen un impacto directo en la decisién de compra. Entre los que consumen
almuerzos regularmente un 82.1% de los encuestados admitié haber decidido NO comprar
un almuerzo en alguna ocasién debido a la fila que habia. Esta cifra de abandono es aun
mas drastica en compras generales (ej. cafés, snacks), donde un 88.8% de los 224

14

https://docs.google.com/document/u/0/d/1yiRd_Kh5DvCYjkbeiY31NPEBzmgXh4Oh4PvMGbb4V94/edit

encuestados ha optado por no comprar algo por no querer o no poder esperar.

La receptividad hacia una potencial solucién tecnoldgica es abrumadoramente positiva. Ante
la pregunta de si usarian un sistema para ver el menu, pagar con anticipacion y retirar en un
horario definido, un 96.4% de los 224 encuestados respondié afirmativamente.

Las 57 respuestas abiertas de la encuesta proporcionaron un contexto cualitativo valioso,
reforzando el entusiasmo por la idea (con frases como "Hagan realidad el sueno de
muchos", "me parece una fantastica idea" y "Seria increible"). De manera crucial, varias
respuestas identificaron con precisién el punto de dolor central: el cuello de botella no esta
en la preparacion de la comida, sino en el proceso de pago. Los usuarios sefialaron
explicitamente que "la fila es por la demora de la caja" y que "el sistema de cobranza de la
cantina es muuuuuy lento". Adicionalmente, muchas de las funcionalidades deseadas por
los usuarios se alinean directamente con los objetivos de una solucién de pedidos
anticipados. Surgieron solicitudes espontaneas para "poder consultar los menus disponibles
desde cualquier lado", "un plan mensual de pago" con beneficios, e incluso la idea de
"cargar el dia anterior que va a comer" para que la cocina pueda planificar la produccion.
Finalmente, las respuestas también reflejaron una insatisfaccion general con aspectos del
servicio actual (precios, calidad, variedad, trato), lo que sugiere una alta disposicién de los
usuarios a adoptar un nuevo sistema que mejore su experiencia general.

Por lo tanto, los datos de la encuesta proveen una validacidén robusta. Demuestran que el
problema de las filas es real y frecuente, que genera una pérdida de ventas tangible para la
cantina y que la comunidad universitaria esta dispuesta a adoptar masivamente (96.4%) una
solucion digital que resuelva estos problemas.

Podran encontrar la encuesta en el anexo 2
2.3. Conclusion del Analisis

Las acciones llevadas a cabo en el analisis de campo confirman con solidez tanto la
viabilidad como la necesidad de una solucion tecnoldgica. La viabilidad operativa queda
establecida por la disposicion de la administracion a adoptar el sistema bajo condiciones
claras. Por otro lado, la necesidad del usuario ya no es una hipétesis de "demanda latente",
sino un hecho validado cuantitativamente: los datos de 223 encuestados demuestran que el
problema de las filas es una experiencia real (impactando al 88.8% en compras generales) y
que existe una abrumadora disposicion (96.4%) para adoptar una solucién de pedidos
anticipados.

En conjunto, estos hallazgos justifican plenamente el desarrollo de la plataforma,
asegurando que responde a una necesidad sentida y que sera bien recibida por toda la
comunidad universitaria.

3. Opciones Similares en el Mercado

El mercado actual ofrece una variedad de soluciones digitales para la gestién de pedidos y
pagos en entornos gastrondmicos, cada una con sus propias caracteristicas, ventajas y
desventajas. Analizar estas opciones permite comprender el panorama competitivo y el
nicho especifico que el proyecto Cantina UCC busca llenar.

15

Entre las soluciones existentes, se pueden identificar principalmente tres categorias:

e Aplicaciones de Delivery de Terceros: Plataformas como Uber Eats, Rappi, DiDi
Food, Glovo o Just Eat son ampliamente conocidas y ofrecen un servicio de logistica
de entrega externa. Su principal atractivo radica en su vasta base de clientes, lo que
permite a los restaurantes aumentar significativamente sus ventas y su alcance sin
una inversién directa en marketing. Para el cliente, estas aplicaciones brindan una
gran comodidad y conveniencia, permitiendo pedir comida desde cualquier lugar y
recibirla rapidamente. Ademas, la plataforma externa se encarga de la logistica de
entrega, los pagos y la gestion de riesgos asociados. Sin embargo, estas ventajas
vienen acompanadas de desventajas significativas, como las altas comisiones que
cobran (que pueden ascender hasta el 30% de las ventas), lo que impacta
directamente en los margenes de ganancia del negocio. Los restaurantes también
pueden desarrollar una dependencia y un control limitado sobre ciertos aspectos de
su operacioén y la calidad del servicio, ya que los retrasos o errores pueden afectar
su reputacion, incluso si estan fuera de su control.

e Software de Gestion de Restaurantes: Sistemas integrales que van mas alla de la
simple toma de pedidos. Estas plataformas suelen incluir funcionalidades avanzadas
como gestion de inventarios (control de recetas, ingredientes), facturacién, sistemas
de punto de venta (POS), gestion de ndminas, seguimiento del rendimiento,
programas de fidelizacion y analisis de ventas detallados. Algunos se especializan
en agilizar operaciones, mejorar la experiencia del cliente, optimizar el
procesamiento de pagos o gestionar pedidos omnicanal. La ventaja principal es la
centralizacion de todas las operaciones del restaurante en una Unica plataforma, lo
que mejora la eficiencia y el control. Sin embargo, su complejidad y costo inicial
pueden ser elevados, y muchas de sus funcionalidades exceden las necesidades de
una operacién mas simple como la de una cantina universitaria.

El Vacio que Cantina UCC Busca Llenar:

El proyecto Cantina UCC no compite directamente con las plataformas de delivery ni con los
software de gestion integral. En cambio, se posiciona como un sistema de pedidos y pagos
interno, disefiado especificamente para resolver la ineficiencia del actual proceso presencial
y manual de la Universidad Catélica de Cérdoba, donde los usuarios deben hacer una fila
para pagar y otra para seleccionar y retirar su comida.

La solucion se enfoca en la recogida rapida de pedidos anticipados por parte de usuarios
que ya se encuentran en el campus, llenando el vacio de una solucion a medida que evite
tanto las altas comisiones de los intermediarios como la complejidad innecesaria de los
sistemas de gestion integral.

La eficacia de este enfoque ha sido corroborada en el sector de servicios de alimentacion.
Por ejemplo, la empresa Gallina Blanca (anexo 3) logré automatizar la recepcion y gestiéon
de pedidos, lo que resultd en la liberacién de aproximadamente 500 horas anuales en su
departamento de atencion al cliente. Otro caso relevante es el de la Plataforma Integrada de
Auto Atenciéon (PIA) para ICB Food Service (anexo 4), que al digitalizar y optimizar la
gestion de pedidos, mejord notablemente la eficiencia operativa de la empresa.

Aunque el proyecto Cantina UCC esta orientado a una escala menor, estos ejemplos
demuestran que la adopcion de tecnologias para la gestion de pedidos anticipados reduce
significativamente los tiempos de espera, optimiza los recursos y mejora la satisfaccién del

16

cliente. Al crear una solucion interna, el proyecto elude los costos y la dependencia de
plataformas de terceros, optimiza los margenes de ganancia y permite un control total sobre
la experiencia del usuario, respondiendo de manera inteligente a la necesidad de agilidad
en un contexto de recreos cortos y alta afluencia que las soluciones comerciales genéricas
no abordan.

La siguiente tabla compara las soluciones digitales existentes, destacando la posicién unica
de Cantina UCC en el caso:

Tipo de Caracteristicas Ventajas Desventajas Relevancia para
Solucion Clave Generales Generales Cantina UCC
Incremento de AIES BUTIIETIES No aplica
Logistica de (hasta 30%), . P
App de . ventas, mayor , directamente;
. entrega, amplia dependencia y .
Delivery . alcance, . Cantina UCC no
base de clientes, . control limitado, .
Externa . comodidad .. ofrece delivery
marketing. . complejidad
para el cliente. . externo.
multicanal.
. Costo inicial .
Centralizacién osto inicia Demasiado
. elevado, .
Gestion de de . complejo y
. . . complejidad
Software inventario, operaciones, excesiva para costoso para la
POS facturacion, control . P necesidad
. s una cantina L
Integral néminas, analisis detallado, universitaria especifica;
de ventas, POS. reportes . L Cantina UCC es
funcionalidades ..
avanzados. . mas agil.
no esenciales.
Control total
Pedidos y pagos sobre la Requiere Solucién a medida
Sistema de anticipados, operacion, desarrollo propio que llena un vacio
pedido gestion de planes retencién de y mantenimiento, al ofrecer control
Interno (a de comida, interfaz ganancias, sin logistica de total en un
medida) cliente/administrad experiencia de delivery integrada entorno
or. usuario por defecto. institucional.
personalizada.

4. Tecnologias Investigadas

Para el desarrollo de la aplicacion Cantina UCC, se evaluaron diversas tecnologias en las
capas de frontend, backend, despliegue y servicios en la nube, asi como integracion y
despliegue continuo. La seleccion final se basé en criterios de rendimiento, escalabilidad,
facilidad de desarrollo y adecuacion al contexto del proyecto.

Frontend | Ul

La capa de interfaz de usuario es crucial para la interaccién del usuario y la adaptabilidad a
diferentes dispositivos. Se consideraron los siguientes frameworks vy librerias:

17

Next.js:

Caracteristicas: Next.js es un framework de JavaScript de codigo abierto construido
sobre React, que facilita la creacién de aplicaciones y sitios web rapidos y faciles de
usar. Permite el renderizado del lado del servidor (SSR) y la generacion de sitios
estaticos (SSG), asi como la combinaciéon con el renderizado del lado del cliente
(CSR), lo que lo convierte en una arquitectura muy potente. Ofrece enrutamiento
automatico, optimizacion de imagenes, actualizacion y recarga rapida, entre otros.

Ventajas: Proporciona un rendimiento muy alto y una gran eficiencia gracias a sus
capacidades de SSR y SSG, lo que se traduce en tiempos de carga reducidos y una
mejor experiencia de usuario. Es altamente amigable con el SEO, lo cual es
fundamental para la visibilidad de una aplicacién publica (aunque no es relevante en
este caso). Simplifica el desarrollo web con su sistema de enrutamiento automatico.
Ademas, incluye optimizacién automatica de imagenes y funcionalidades de
actualizacién rapida.

Desventajas: La curva de aprendizaje puede ser mas pronunciada si el
desarrollador no tiene conocimientos previos solidos de React. Aunque su
comunidad esta creciendo, es mas pequeifa en comparacioén con la de React puro.
La implementacién correcta del SSR puede ser mas compleja de configurar de lo
que parece.

Relevancia para Web App Responsive: Sus capacidades de renderizado hibrido y
optimizacién automatica lo hacen ideal para construir aplicaciones web rapidas y con
buen SEO, lo cual es crucial para una interfaz de usuario publica y accesible desde
cualquier dispositivo. La optimizacion de imagenes y la precarga de enlaces
contribuyen a una navegacion fluida y rapida en cualquier pantalla.

React.js:

Caracteristicas: React.js es una biblioteca de JavaScript desarrollada por
Facebook, centrada exclusivamente en la construccion de interfaces de usuario (Ul).
Una de sus caracteristicas clave es el uso de un DOM Virtual, una representacion
ligera del DOM real, que permite actualizar solo los elementos necesarios en
pantalla, mejorando el rendimiento. Facilita la creacién de Single Page Applications
(SPA) y se basa en una arquitectura de componentes reutilizables, lo que promueve
el desarrollo modular y la escalabilidad.

Ventajas: Es relativamente facil de aprender, especialmente para quienes ya
conocen JavaScript, gracias a su sintaxis intuitiva. Ofrece alta flexibilidad y un
excelente rendimiento, integrandose bien con otras librerias y respondiendo
eficazmente bajo carga. Cuenta con una comunidad de desarrolladores muy amplia
y activa, y el respaldo continuo de Facebook. Es ideal para interfaces dinamicas
donde los datos cambian frecuentemente.

Desventajas: Al ser solo una biblioteca de Ul, React.js requiere la integracion con
otras herramientas (como React Router para enrutamiento o Redux para gestién de
estado) para construir aplicaciones complejas, lo que puede aumentar la
complejidad del proyecto. Puede haber una falta de documentacion oficial unificada
y su excesiva libertad estructural puede llevar a proyectos mal gestionados si no hay

18

Vue.js:

un patrén arquitecténico claro.

Relevancia para Web App Responsive: Su eficiencia con el DOM Virtual y su
enfoque basado en componentes son excelentes para crear interfaces de usuario
interactivas y rapidas que se adaptan bien a diferentes tamafios de pantalla,
garantizando una experiencia de usuario positiva incluso con grandes cantidades de
datos dinamicos.

Caracteristicas: Vue.js es un framework progresivo de JavaScript para la
construccién de interfaces de usuario, reconocido por su simplicidad y flexibilidad. Es
notablemente ligero, con un paquete principal comprimido que pesa solo 18 KB. Ha
adoptado los mejores conceptos de React y Angular, ofreciendo una combinacion
equilibrada.

Ventajas: Presenta una curva de aprendizaje mas suave en comparacion con React
y Angular, lo que lo hace accesible incluso para principiantes. Es facil de entender e
integrar en proyectos existentes, permitiendo incluir componentes en aplicaciones ya
desarrolladas. Ofrece un excelente rendimiento debido a su tamafio reducido.

Desventajas: Su comunidad, aunque activa, es relativamente mas pequefna que la
de React o Angular, especialmente fuera de China, lo que puede limitar la
disponibilidad de plugins y librerias para requisitos muy especificos. Puede no ser la
opcion ideal para proyectos de muy gran escala, aunque es utilizado por empresas
como IBM y Adobe.

Relevancia para Web App Responsive: Su simplicidad y ligereza lo hacen
adecuado para desarrollar aplicaciones web interactivas y dinamicas que funcionan
bien en cualquier dispositivo, especialmente cuando se busca agilidad en el
desarrollo y una curva de aprendizaje reducida.

Angular:

Caracteristicas: Angular es un framework de desarrollo de aplicaciones web de una
sola pagina (SPA) completo y estructurado, basado en TypeScript y mantenido por
Google. A diferencia de React, que es una biblioteca, Angular proporciona una
solucién integral que incluye inyeccion de dependencias y una arquitectura mas
estructurada, con un compilador lvy que optimiza el tamarfio de las aplicaciones.

Ventajas: Ofrece una solucion "todo en uno" con una arquitectura robusta y
estructurada, lo que lo hace ideal para proyectos complejos y empresariales que
requieren una gran organizacion y escalabilidad. Cuenta con un fuerte soporte de
Google y una evolucidon constante con multiples versiones que mejoran el
rendimiento y las herramientas de desarrollo.

Desventajas: Su curva de aprendizaje es mas empinada en comparacion con React
y Vue.js, lo que puede hacerlo menos ideal para proyectos con tiempos de desarrollo
mas cortos o de menor envergadura. Su enfoque mas completo puede resultar en
una mayor complejidad inicial.

Relevancia para Web App Responsive: Aunque es una herramienta potente para

19

construir SPAs robustas y escalables, su enfoque mas estructurado y completo
puede ser excesivo para aplicaciones que priorizan la agilidad y la ligereza en el
desarrollo responsive, a menos que el proyecto esté destinado a escalar a una
complejidad empresarial significativa.

Tabla comparativa de Frameworks Frontend para Aplicaciones Web Responsive

Caracteristicas Relevancia para
Framework Clave Ventajas Desventajas App Web
Responsive
SSR/SSG, CSR, | "0 Curvade Ideal para
. rendimiento, aprendizaje si L
enrutamiento , aplicaciones web
. . amigable con no se conoce -
Next.js automatico, o rapidas y con buen
e, SEO, simplifica React,
optimizacion de . , SEO, adaptable a
S el desarrollo, comunidad mas . . i,
imagenes. - cualquier dispositivo.
escalable. pequefia.
- Requiere
Facil de . Excelente para
. herramientas . ,
Biblioteca UlI, aprender, alta adicionales para interfaces de usuario
DOM Virtual, flexibilidad, P interactivas y
. proyectos .
React.js componentes gran , rapidas que se
o . complejos, .
reutilizables, comunidad, menos amiaable adaptan bien a
SPA. ideal para Ul 9 diferentes tamanos
s con SEO por
dinamicas. de pantalla.
defecto.
Adecuado para
. Curva de Comunidad mas aplicaciones web
Progresivo, o . . .
. aprendizaje pequefa interactivas y
ligero (18 KB), L . o
. S suave, facil (especialmente dinamicas que
Vue.js simplicidad,
o integracion, fuera de China), funcionan bien en
flexibilidad, . . i
. excelente menos cualquier dispositivo,
reactividad. . L , .
rendimiento. plugins/librerias. agilidad en
desarrollo.
Framework Solucion "todo Curva de Potente para SPAs,
completo SPA, en uno", aprendizaje pero su estructura
TypeScript, robusto para empinada, puede ser excesiva
Angular arquitectura proyectos puede ser si se prioriza
estructurada, complejos, complejo para agilidad y ligereza
inyeccién de fuerte soporte proyectos en el desarrollo
dependencias. de Google. pequefos. responsive.
Backend

Para el desarrollo del backend, que gestiona la logica de negocio, los datos y las
interacciones con la base de datos y servicios externos, se consideraron varias opciones:

20

FastAPI:

Caracteristicas: FastAPl es un framework web moderno y rapido para construir
APIs con Python, basado en estandares abiertos como OpenAPI (anteriormente
Swagger) y JSON Schema. Se destaca por su muy alto rendimiento, comparable
con NodedS y Go. Permite una velocidad de programacion significativamente mayor
(aproximadamente un 200% a 300% mas rapido) y reduce los errores inducidos por
desarrolladores en un 40%. Ofrece soporte para programacion asincrona,
autocompletado en editores y documentacion interactiva automatica (Swagger Ul y
ReDoc).

Casos de Uso para APIs de Gestion de Pedidos: Es ideal para construir APIs
robustas y eficientes que requieren validacién de datos rigurosa (incluso para
objetos JSON profundamente anidados), conversién automatica de datos de entrada
y salida, y una documentacién clara y automatica. Su alto rendimiento y soporte
asincrono lo hacen particularmente adecuado para sistemas transaccionales con
alta demanda, como una API de gestion de pedidos, donde la integridad de los datos
y la respuesta rapida son cruciales.

Django:

Caracteristicas: Django es un framework robusto de Python para el desarrollo de
aplicaciones web, conocido por su filosofia de "baterias incluidas". Proporciona un
potente ORM (Object-Relational Mapper) que facilita la interaccién con la base de
datos, un panel de administracion integrado, serializacién de datos en diferentes
formatos (como JSON y XML), y herramientas para autenticacion de usuarios.
Cuenta con una excelente documentacion y una gran comunidad.

Casos de Uso para APIs de Gestion de Pedidos: Es adecuado para aplicaciones
complejas que requieren una base de datos bien estructurada y una gran cantidad
de funcionalidades pre-construidas. Su ORM simplifica la gestion de productos,
o6rdenes y usuarios en la base de datos, mientras que sus caracteristicas de
autenticacién y serializaciéon son valiosas para construir APls seguras y eficientes
para un sistema de pedidos.

Caracteristicas: Flask es un micro-framework de Python, caracterizado por ser
ligero y flexible. Permite a los desarrolladores construir APls RESTful con un alto
grado de control sobre la estructura del proyecto. Facilita la implementacion de
funcionalidades como la autenticacion (por ejemplo, con Flask-JWT), paginacion y
ordenamiento de datos, ofreciendo una sintaxis sencilla para definir rutas con
parametros dinamicos.

Casos de Uso para APIs de Gestion de Pedidos: Es ideal para construir APIs
RESTful personalizadas y de tamafo pequefio a mediano, donde se valora la
flexibilidad y un control granular sobre cada componente. Su ligereza lo hace
adecuado para proyectos que no requieren la complejidad de framework "todo
incluido" y que buscan una implementacion eficiente de endpoints especificos.

21

Node.js (Express.js):

Caracteristicas: Node.js es un entorno de ejecucién de JavaScript de un solo hilo y
multiplataforma, basado en el motor V8 de Google Chrome, ideal para aplicaciones
de red escalables y en tiempo real. Express.js es un framework web minimalista y
flexible construido sobre Node.js, que simplifica la creacion de APIs y aplicaciones
web. Ambos permiten la codificacién en JavaScript tanto para el

frontend como para el backend, lo que puede agilizar el proceso de desarrollo.

Casos de Uso para APIs de Gestidon de Pedidos: Es excelente para construir APIs
REST ligeras y rapidas, especialmente en escenarios que requieren comunicacion
en tiempo real (como chats o streaming de datos) o manejo intensivo de operaciones
de entrada/salida (E/S). Su modelo asincrono y no bloqueante lo hace eficiente para
gestionar un gran numero de conexiones simultaneas, lo cual es ventajoso para una
API de gestidn de pedidos con potencial alta concurrencia.

Go (Gin Gonic):

Caracteristicas: Go es un lenguaje de programacioén compilado y fuertemente
tipado creado por Google, disenado para ser simple, eficiente y confiable. Destaca
por su excelente manejo de la concurrencia a través de goroutines. Gin Gonic es
un framework web minimalista y de alto rendimiento para Go. Proporciona un
enrutador muy rapido y una API sencilla para construir servicios web, con un bajo
consumo de memoria. Al ser un lenguaje compilado, el despliegue se simplifica a un
unico archivo binario.

Casos de Uso para APIs de Gestion de Pedidos: Es |la opcion ideal para
microservicios que demandan el maximo rendimiento posible y una latencia
minima. Su capacidad para manejar miles de conexiones concurrentes de manera
eficiente lo hace perfecto para sistemas de pedidos a gran escala o en tiempo real.
La seguridad que provee el tipado estatico reduce errores en tiempo de ejecucion,
algo critico para sistemas transaccionales.

Tabla comparativa de Frameworks Backend para APls de Gestion de Pedidos:

Casos de Uso
Caracteristicas Relevantes
Framework Ventajas Desventajas para APIs de
Clave iy
Gestion de
Pedidos
Python, alto Muy répido de APIs de alto
rendimiento, programary Ecosistema mas | rendimiento,
asincrono, ejecutar, reduce joven que microservicios,
FastAPI OpenAPI/JSON errores, Django/Node.js, sistemas
Schema, documentacion menos "baterias | transaccionales
validacion interactiva incluidas". con validacion
automatica. automatica. de datos critica.
. Python, Desarrollo Puede ser Aplicaciones
Django n f 2fl n H " 5
baterias rapido de demasiado empresariales

22

incluidas", aplicaciones para APls completas, APIs
ORM, panel complejas, gran simples, menos con loégica de
admin, comunidad, flexible para negocio
autenticacion. robusto. microservicios complejay
puros. gestion de datos
relacionales.
Gran control Requiere mas
sobre la e APIs RESTful
Python, . configuracioén .
. estructura, ideal ligeras,
micro-framewor manual para . -
. para APIs REST . . microservicios
Flask k, ligero, . funcionalidades o
, personalizadas, especificos,
flexible, . comunes, .
rapido para R , prototipado
modular. rovectos menos "baterias rapido
proy ~ incluidas". pido.
pequenos.
Curva de APIs REST
Alto rendimiento | aprendizaje de rapidas y
JavaScript, para E/S, ideal asincronia, ligeras,
entorno de para tiempo manejo de aplicaciones de
Node.js ejecucion V8, real, un solo errores puede chat en tiempo
(Express.js) asincrono, no lenguaje ser complejo, un | real, streaming

bloqueante, (full-stack JS), solo hilo puede de datos,
minimalista. gran ecosistema | ser un cuello de microservicios
NPM. botella si no se con alta
gestiona bien. concurrencia.
Rendimiento
APIs de mu
extremadament Curva de y
: . o alta
Go, compilado, e alto, bajo aprendizaje de
performance,
alto consumo de Go puede ser . .
rendimiento memoria mayor, MICroserviclos
Go (Gin Gonic) ;.] L criticos donde la
concurrencia despliegue ecosistema de .
. o . , latencia es
(goroutines), simplificado librerias menos .
L S clave, sistemas
minimalista. (binario unico), extenso que con alta
fuertemente Node.js/Python. .
. concurrencia.
tipado.

Despliegue y Servicios en la Nube:

La eleccion de una plataforma de nube es fundamental para la escalabilidad, seguridad y
disponibilidad de la aplicacion. Se compararon los tres principales proveedores:

AWS (Amazon Web Services):

e Caracteristicas: AWS es el lider del mercado en servicios en la nube, ofreciendo
una gama extremadamente amplia y madura de mas de 200 servicios. Proporciona
una infraestructura altamente escalable y globalmente disponible, con 99 Zonas de
Disponibilidad en 31 regiones geograficas.

23

Servicios Clave (relevantes para aplicaciones): Incluye Elastic Compute Cloud
(EC2) para capacidad informatica segura y escalable, S3 para almacenamiento de
objetos, y servicios de bases de datos como RDS. También ofrece servicios de
contenedores compatibles con Docker y Kubernetes.

Consideraciones: A pesar de su robustez y amplitud, AWS puede resultar costoso y
complejo para proyectos mas pequenos o con presupuestos limitados, debido a su
vasta gama de servicios y modelos de precios.

Google Cloud Platform (GCP):

Caracteristicas: GCP ofrece una infraestructura confiable con un fuerte enfoque en
el desarrollo y despliegue de aplicaciones escalables. Una de sus ventajas
distintivas es la disponibilidad de una capa gratuita, que puede ser muy util para
proyectos de pequefia escala o en sus fases iniciales. Ademas, GCP se destaca por
su compromiso con la sostenibilidad, operando con energia 100% renovable en
todos sus centros de datos.

Servicios Clave (relevantes para Cantina UCC):

o Firestore: Una base de datos NoSQL que permite el almacenamiento y la
sincronizacién de datos en tiempo real, ideal para la gestién dinamica de
pedidos.

o Cloud Run: Un servicio que facilita el despliegue de aplicaciones en
contenedores con un modelo serverless, escalando automaticamente segun
la demanda, lo que optimiza el uso de recursos y costos.

o Cloud Storage (Buckets): Un servicio de almacenamiento de objetos
disenado para guardar imagenes y otros archivos estaticos de manera
eficiente y escalable.

o Secrets Manager: Una herramienta para la gestién segura de secretos y
credenciales, esencial para la seguridad de la aplicacion.

Consideraciones: Su capa gratuita y el modelo de precios competitivo lo hacen
particularmente atractivo para startups y proyectos con presupuesto limitado. Su
compromiso con la energia renovable afiade un valor significativo desde una
perspectiva medioambiental.

Microsoft Azure:

Caracteristicas: Azure es la plataforma de nube de Microsoft, que proporciona
herramientas y servicios similares a AWS y GCP. Ocupa el segundo lugar en cuota
de mercado y es conocida por su fuerte integracion con soluciones empresariales y
herramientas de desarrollo de Microsoft.

Servicios Clave (relevantes para aplicaciones): Ofrece Maquinas Virtuales como
su principal servicio de computacion, Almacenamiento Blob para objetos, y Azure
Synapse Analytics para lagos de datos y almacenes. También incluye servicios de
computacion sin servidor.

Consideraciones: Aunque potente, su interfaz puede ser percibida como mas dificil

24

de usar para nuevos usuarios. Ofrece precios competitivos de pago por uso y

flexibilidad para cancelar planes en cualquier momento.

Tabla comparativa de Plataformas de Nube para Despliegue de Aplicaciones:

Servicios Consideracio
Cuota de Clave . Desventaja
Plataforma Ventajas nes
Mercado Relevantes s -
. Especificas
(Ejemplos)
EC2 Puede ser
(computacion), Amplitud de costoso y Ideal para
S3 servicios, complejo sistemas
AWS Lider (almacenamient madurez, para complejos y
(31%) 0), RDS (bases escalabilidad proyectos empresariales,
de datos), global, gran pequefos, amplia oferta
servicios de ecosistema. curva de de servicios.
contenedores. aprendizaje.
Firestore S:niar?);aw:zga Menor Muy util para
(NoSQL), Cloud 2 . cuota de ydawp
con energia startups y
Run mercado
100% proyectos con
GCP Tercero (SIS} renovable que resupuesto
(10%) Cloud Storage vabie, AWS/Azure, | PresuP
) precios . limitado, fuerte
(objetos), . ecosistema
competitivos, enfoque en
Secrets . en -
servicios . sostenibilidad.
Manager. crecimiento.
serverless.
Maquinas Interfaz .
Pref
Virtuales Fuerte puede ser referido por
L . . e empresas con
(computacion), integracion dificil para .
. ecosistemas
. Blob Storage con Microsoft, nuevos .
Microsoft Segundo . . Microsoft,
(objetos), soporte usuarios, .
Azure (23%) . e precios
Synapse empresarial, percepcion o
. . competitivos
Analytics (data amplia gama de mayor
. . . de pago por
lake), servicios de servicios. complejidad USo
sin servidor. '

Herramientas de Integraciéon y Despliegue Continuo (CI/CD)

Jenkins

Caracteristicas: Jenkins es una de las herramientas mas veteranas y flexibles para CI/CD.
Permite automatizar el ciclo de vida completo del software (construccion, pruebas,
despliegue). Tiene un ecosistema muy amplio de plugins, lo que lo hace extremadamente

configurable.

Servicios Clave / Capacidades:

25

e Pipelines altamente personalizables.

e Amplia integracion con otras herramientas (Docker, Kubernetes, GitHub, Slack, etc.).
Despliegue en practicamente cualquier infraestructura (on-premise o cloud).

Consideraciones:
e Requiere instalacion y mantenimiento propios (no es SaaS).
e La curva de aprendizaje puede ser elevada.

e Ideal para equipos con experiencia técnica que buscan control total.

GitHub Actions

Caracteristicas: GitHub Actions es la solucion de CI/CD nativa de GitHub. Permite definir
flujos de trabajo en YAML que se disparan en funcion de eventos (push, pull request,
releases, etc.).

Servicios Clave / Capacidades:

e Integracion nativa con repositorios de GitHub.

e Amplio marketplace de acciones reutilizables.

e Ejecucion en runners de GitHub o runners propios.

e Soporte directo para despliegue en plataformas como AWS, GCP, Azure y Vercel.
Consideraciones:

e Mas sencillo de configurar que Jenkins.

e Escalable segun el tamafo del proyecto.

e |deal para startups, proyectos open source y equipos que ya trabajan con GitHub.

itLab CI/CD

Caracteristicas: GitLab CI/CD viene integrado en GitLab, lo que lo convierte en una
solucién todo en uno para repositorios, issues, CI/CD y monitoreo.

Servicios Clave / Capacidades:
e Pipelines definidos en archivos YAML.
e Soporte nativo para contenedores y Kubernetes.
e Integracion con gestion de proyectos y control de versiones.
e Permite self-hosted runners o usar los de GitLab.

Consideraciones:

26

e Ideal si ya se trabaja en GitLab (flujo completo en una sola plataforma).

e Puede ser mas cerrado en comparacion con Jenkins en cuanto a integraciones

externas.

e Su comunidad y ecosistema son mas pequefos que los de GitHub.

Tabla resumen

Herramienta | Tipo/ Modelo Ventajas Desventajas |Consideraciones Especificas
Extremadamen | Configuracié
te flexible, n inicial
ecosistema compleja, Ideal para equipos
. Open source, maduro de mantenimien | técnicos que requieren
Jenkins . .
self-hosted plugins, to propio, control total y entornos
soporta curva de complejos.
cualquier aprendizaje
infraestructura. alta.
Configuracién
L
: SaaS 9 a de GitHub, | Muy util para proyectos en
GitHub . nativa con .
. integrado en . runners GitHub, startups y open
Actions) GitHub, .
GitHub gratuitos source.
marketplace de -
. limitados.
acciones,
escalabilidad.
Flujo completo
en una sola Menor
SaaS/ plataforma ecosistema Ideal para equipos que ya
GitLab self-hosted (repos, issues, que GitHub, trabajan en GitLab y
Cl/CD (incluido en Cl/CD), menos buscan una solucion todo
GitLab) integracion flexible que en uno.
nativa con Jenkins.
Kubernetes.

Plataformas de Pago en el Ecosistema Argentino (Opciones para

integrar pagos online)

Para tomar una decision informada, se analizaron las principales opciones disponibles en
el mercado argentino. La siguiente evaluacion se basa en criterios criticos para un
proyecto en su fase inicial y de crecimiento, como la estructura de costos, la liquidez, la

oferta de pagos y la facilidad de implementacion.

Criterios de Evaluacion

La comparacion se estructura en torno a cinco métricas fundamentales:

1. Modelo de Comisiones: Se analiza la estructura de costos, que generalmente
incluye un porcentaje variable por transaccion, a veces un costo fijo, y el Impuesto al

27

Valor Agregado (IVA). Las comisiones pueden variar significativamente segun el
método de pago y el plazo de acreditacion de los fondos.

Plazos de Acreditacion de Fondos: Este factor es vital para la gestion del flujo de
caja de un negocio. Los plazos pueden ir desde la acreditacion inmediata, con una
comision mas alta, hasta 30 dias 0 mas para obtener una tasa mas competitiva.

Métodos de Pago Aceptados: Se evalua la amplitud de opciones que la pasarela
ofrece al cliente final, incluyendo tarjetas de crédito y débito y saldo de billeteras
digitales.

Facilidad de Integracion: Se considera la disponibilidad y calidad de Ia
documentacion técnica, APIs, y Kits de Desarrollo de Software (SDKs),lo cual impacta
directamente en los costos y tiempos de desarrollo.

Mercado Objetivo y Soporte: Cada pasarela suele estar optimizada para un
segmento de negocio especifico, desde pequenos emprendedores hasta grandes
corporaciones. La calidad y disponibilidad del soporte técnico es también un

diferenciador clave para resolver incidencias de manera eficiente.

Matriz Comparativa de Pasarelas de Pago en Argentina

Caracteristica Mercado PayU Uala Bis Mobbex Payway
Pago (Prisma)
Variable: o Negociacion
. 1.99% a o | #Ae 2 NWAL st & A | directa con
Comisiones o 3.49% + fijo | (crédito),
5.99% + IVA o (plan bancos +
(aprox.) + IVA 29% + IVA .
(depende o simple) fee de la
(débito)
del plazo) pasarela
Variable, Directo en
Plazos Inmediato, con retiros Inmediato 5-12 dias | cuenta
Acreditacion 14 0 30 dias | mensuales habiles bancaria
limitados (rapido)
Todos . Tarjetas,
. Amplia . . .
Métodos de (Tarjetas, variedad Tarjetas, Transferenci | Tarjetas,
Efectivo, ’ Link de | as, Cripto | QR, Débito
Pago foco , -
QR, Saldo . pago (via automatico
regional :
en cuenta) Binance)
Buena, foco Com_pleja,
Excelente : requiere
Buena Sencilla, en
. (APIs, . desarrollo a
Integracion (APlIs, foco en links | e-commerce .
SDKs, medida y
. SDKs) de pago y :
Plugins) . convenios
recurrencia .
bancarios

28

Emprended FUEE Y Emprended Pymes y | Grandes
corporacion :
Mercado ores a | o con | ores y | negocios empresas
Obijetivo grandes oDeracion pequefos con pagos | con alto
empresas P comercios recurrentes volumen
en LatAm
24/7 FIZ))(()erstacadosu
Soporte EUIEIe - & Estandar Buepo para atencién Soporte.
veces su nicho : corporativo
. personaliza
geneérico) da

Infraestructura para la Comunicacién Transaccional por Correo
Electrénico

Los correos electrénicos transaccionales son mensajes automatizados que se envian a un
usuario individual en respuesta a una accion especifica realizada por este en una
plataforma o aplicacion. Ejemplos comunes incluyen confirmaciones de compra,
notificaciones de envio, correos para restablecer contrasefas, envio de facturas o
confirmaciones de registro. A diferencia del email marketing, que se envia a listas de
suscriptores con fines promocionales, los correos transaccionales son funcionales y
esperados por el usuario.

Debido a su naturaleza, estos correos tienen tasas de apertura y de clics (CTR)
extremadamente altas en comparacion con las campanas de marketing. Son un punto de
contacto fundamental en el ciclo de vida del cliente y desempenan un papel crucial en la
construccién de confianza. Un correo de confirmacion de pedido que llega de forma
instantanea y con un formato profesional reafirma al cliente que su compra fue exitosa y que
la empresa es fiable.

Impacto en la Operativa

Una gestion deficiente de los correos transaccionales puede tener consecuencias negativas
severas. Si un correo de confirmacién no llega, llega con retraso o es filtrado a la carpeta de
spam, el usuario puede pensar que su transaccion falld, lo que genera ansiedad y
desconfianza. Esto, a su vez, provoca un aumento en las consultas al equipo de soporte al
cliente, incrementando la carga de trabajo y los costos operativos. Por lo tanto, garantizar
una alta tasa de entregabilidad (la capacidad de que los correos lleguen a la bandeja de
entrada) es una prioridad técnica y de negocio.

Por esto, se evaluaron diferentes enfoques para el envio de correos, desde servicios de API
especializados hasta una implementacion propia utilizando la libreria smtplib de Python con
un servidor de Gmail.

Servicios Dedicados | Amazon SES Desarrollo Probio
Caracteristica (SendGrid, Mailgun, (Simple Email . p
. (Gmail + smtplib)
Resend) Service)

29

Planes escalonados

Modelo de pago por
uso,

"Gratis" dentro de los

Modelo de con niveles gratuitos extremadamente .
. . - limites de la cuenta
Precios funcionales para economico a gran :
L de Gmail.
iniciar. escala ($0.10 usd
por 1,000 correos).
Baja. Interfaz
Muy alta. Interfaces . J . . Engafiosamente
; técnica y compleja, .
amigables, excelente el simple para un
Uso P P ecosistema AWS Piel 9

lenguajes que
simplifican la
integracion.

para una
configuracién
correcta.

y escalar en un
entorno de
produccion.

Entregabilida

Excelente. Ofrecen
herramientas
avanzadas para
maximizar la
entregabilidad,
gestionar la

Muy alta, pero
depende de una
configuracién
manual correcta de
protocolos como
SPF y DKIM. Las

Pobre. No ofrece
analiticas. La
entregabilidad
depende enteramente

d y Analiticas . Iy de la reputacion de
reputacion del analiticas son
, . .) una cuenta personal,
remitente y analizar basicas y requieren .
e . g con alto riesgo de ser
métricas detalladas integracién con
. . marcada como spam.
(aperturas, clics, otros servicios de
rebotes). AWS.
Muy baja. Limites de
Alta. Disefiados para envio diarios estrictos
. Muy alta.
manejar grandes . (500 para cuentas
-) , Construido sobre la :
Escalabilidad volumenes de envio . gratuitas, 2,000 para
L . . infraestructura de
y Limites sin limites diarios Workspace) que

restrictivos en los
planes de pago.

AWS para escalar a
millones de correos.

pueden bloquear la
cuenta por hasta 24
horas si se exceden.

30

Ideal Para...

Pruebas, prototipos o

Proyectos que buscan | Proyectos que
¢ \ d q proyectos personales

una solucion robusta, priorizan el costo)
. . . de muy bajo volumen.
facil de implementary | por encima de todo .,
i No es una opcion
con analiticas y ya operan dentro .
, viable para una
potentes desde el del ecosistema de erlesion @
inicio. AWS.

produccion.

Estrategias de Pruebas del Sistema

Para garantizar la calidad, fiabilidad y correcto funcionamiento de la aplicacion, es
fundamental implementar una estrategia de pruebas multifacética que abarque diferentes
niveles del sistema. Esta estrategia se centra en la deteccion temprana de errores, la
validacion de la logica de negocio y la confirmacion de que el software cumple con las
expectativas de los usuarios finales. Las principales etapas de prueba incluyen las pruebas
unitarias, las pruebas de integracion y las pruebas de aceptacién de usuario (UAT).

Pruebas Unitarias

Las pruebas unitarias constituyen la primera linea de defensa contra los errores de
software. Su objetivo es verificar el correcto funcionamiento de las unidades de cédigo mas
pequefas y aisladas, como funciones, métodos o componentes individuales.

e Objetivo: Asegurar que cada pieza del cédigo se comporte como se espera de
forma independiente. Por ejemplo, se probaria una funcién que calcula el total de un
pedido, una que valida el formato de un correo electronico o un componente de la
interfaz que muestra el precio de un producto.

e Metodologia: Estas pruebas son automatizadas y se ejecutan frecuentemente
durante el desarrollo. Al aislar los componentes, se utilizan "mocks" o dobles de
prueba para simular dependencias externas (como bases de datos o APIs de
terceros), permitiendo que la prueba se centre exclusivamente en la logica de la
unidad bajo andlisis.

e Beneficios:

o

Deteccion Temprana de Errores: ldentifican problemas en las etapas
iniciales, reduciendo el costo de su correccion.

Facilitan la Refactorizacion: Proporcionan una red de seguridad para
modificar y mejorar el codigo sin introducir regresiones.

Documentacioén Viva: Sirven como una forma de documentacién técnica del
comportamiento esperado de cada unidad.

Pruebas de Integracion

Una vez que las unidades individuales han sido validadas, las pruebas de integracion se

31

encargan de verificar que estas interactuan correctamente entre si.

e Objetivo: Detectar fallos en las interfaces y en la comunicacion entre diferentes
modulos del sistema. En el contexto de Cantina UCC, un ejemplo clave seria probar
el flujo completo de un pedido: desde que se afiade un producto al carrito (frontend),
se procesa el pago (APl externa) y se registra el pedido en la base de datos
(backend).

e Metodologia: Implican la combinacion de varios médulos para simular un flujo de
trabajo real, interactuando con servicios reales o sus versiones de prueba (ej. base
de datos de prueba, entorno "sandbox" de una pasarela de pago).

e Beneficios:

o Validacion de Flujos de Datos: Aseguran que los datos se transmiten
correctamente entre componentes.

o Deteccion de Errores de Interfaz: |dentifican problemas de comunicacién
entre modulos.

o Confianza en la Arquitectura: Verifican que los componentes colaboran de
manera efectiva.

Pruebas de Aceptacion de Usuario (UAT)

En este tipo de pruebas el software es evaluado por los usuarios finales para confirmar
que cumple con sus necesidades y con los requisitos del negocio.

e Objetivo: Validar que el sistema es "apto para su propésito" desde la perspectiva del
usuario. No se centra en encontrar errores de codigo, sino en verificar que la
aplicacion resuelve el problema original de una manera intuitiva y eficiente.

e Metodologia: Un grupo representativo de usuarios finales realiza tareas especificas
en un entorno similar al de produccion para recopilar feedback sobre la usabilidad y
satisfaccién general.

e Beneficios:
o Validacion del Negocio: Confirma que el software entrega el valor esperado.

o Garantia de Usabilidad: Asegura que la aplicacion es facil de usar para su
publico objetivo.

o Reduccién de Riesgos: Minimiza el riesgo de que el producto sea
rechazado por los usuarios tras su lanzamiento.

Pru Funcionale

Este tipo de prueba valida los requisitos del software desde una perspectiva funcional,
simulando escenarios de uso reales para verificar que el sistema se comporta como se
espera. Abarcan flujos de trabajo completos de principio a fin (End-to-End) y, a diferencia de
las UAT, son ejecutadas tipicamente por el equipo de desarrollo o de calidad (QA).

e Objetivo: Validar que el sistema cumple con los requisitos funcionales descritos en

32

las especificaciones. Se centra en probar los flujos de trabajo completos para
asegurar que cada funcionalidad opera correctamente desde la perspectiva del caso
de uso.

Metodologia: Simulacion de escenarios de uso reales, ejecutados por el equipo de
desarrollo o calidad (QA). No se enfoca en la usabilidad o satisfaccién del usuario
final, sino en el cumplimiento estricto de los requerimientos funcionales.

Beneficios:

o Garantia de Calidad: Asegura que el software entregado cumple con las
especificaciones funcionales.

o Validacion de Flujos Criticos: Verifica que los procesos de negocio mas
importantes funcionan correctamente de principio a fin.

o Reduccién de Errores Post-Lanzamiento: Detecta fallos funcionales antes
de que el software llegue a los usuarios finales.

33

PROPUESTA DE SOLUCION

1 Alcance Funcional

Para establecer los requerimientos del sistema, se definird mediante historias de usuario.
Las historias de usuario permitiran identificar las funcionalidades clave del sistema.

Este enfoque asegura que el equipo pueda comprender las expectativas del usuario final,
priorizando las caracteristicas mas importantes y evitando desviaciones o tareas no
esenciales. Las historias de usuario también permitiran una planificacion &gil y una
evaluacién continua del progreso del proyecto.

Historias de usuario:

Usuarios Invitados (sin cuenta)

1. Como usuario invitado, quiero explorar el catalogo de productos.

2. Como usuario invitado, quiero poder agregar productos al carrito, para poder ir
armando mi pedido.

Usuario Registrado (extiende usuario invitado)

3. Como usuario registrado, quiero poder iniciar sesion utilizando mi correo electronico
o cuenta de Google, para acceder a mi perfil y personalizar mi experiencia.

4. Como usuario registrado quiero poder realizar una compra y poner un horario para
retirarlo, para una mejor experiencia y poder planificar mis pedidos.

5. Como usuario registrado, quiero recibir una confirmaciéon por correo electrénico al
finalizar una compra, con las instrucciones para retirar el pedido y la informacién de
la transaccion.

6. Como usuario registrado quiero poder comprar planes de comida por varios dias en
la cantina, para recibir descuentos.

7. Como usuario registrado quiero poder aplicar un plan de comida en una compra.

8. Como usuario registrado, quiero ver el historial de mis compras anteriores, para
poder ver la informacién de todos mis pedidos y mis planes de comida.

Administradores de la cantina:

9. Como administrador de la cantina, quiero poder agregar, editar o eliminar productos
desde una interfaz de administracion, para mantener actualizado el catalogo de la
cantina que ven los usuarios.

10. Como administrador de la cantina quiero poder visualizar los pedidos realizados por
los usuarios para poder ver su estado y administrarlos.

34

11. Como administrador de la cantina quiero poder obtener un informe diario y mensual

de las compras realizadas en dichos periodos y los montos de dinero para poder
hacer un registro de movimientos.

12. Como administrador quiero poder imprimir los tickets de los pedidos que me van

llegando para poder procesarlos en la cocina.

13. Como administrador quiero tener una pantalla con las érdenes que son para la

cocina para evitar tener que imprimir el ticket

14. Como administrador quiero poder crear y gestionar los planes de comida para que

los usuarios puedan comprarlos

Lo que esta incluido en el Alcance Funcional:

Integracion con Mercado Pago: Se integrara la plataforma de pagos Mercado Pago
para procesar las compras de los usuarios y permitir pagos seguros.

Notificaciones por correo electrénico: Los usuarios recibiran notificaciones
automaticas relacionadas con el estado de sus pedidos y transacciones.

Lo que queda fuera del Alcance Funcional:

Gestion de inventarios fisicos: El sistema no gestionara el inventario fisico de la
cantina, solo el catalogo de productos dentro de la plataforma.

Aplicaciéon mévil: Actualmente, solo se desarrollara una version web de la aplicacion;
no se considera una aplicacion mévil en esta ni en ninguna fase del proyecto.

Integracion con otros meétodos de pago: En esta fase, el sistema se integrara
unicamente con Mercadopago. La plataforma incluye la opcién de pagar con tarjetas
de crédito o débito fuera de la aplicacion (por lo que no es requisito excluyente tener
una cuenta de Mercadopago) pero todos los pagos seran manejados Unicamente a
través de este proveedor. Otros proveedores de pago no estan contemplados en
este alcance.

Funciones de analisis avanzado: El sistema no incluira analisis o reportes complejos
sobre ventas, productos o usuarios en esta fase inicial.

2 Diseno

Pantallas

En el frontend de la cantina (para clientes)

1.

Menu de la cantina: Pagina principal, donde el cliente puede navegar por el catalogo
de productos, buscar por nombre o descripcion vy filtrar por categoria. Los productos
pueden anadirse al carrito.

35

9.

Carrito: Pagina que muestra todos los productos anadidos al carrito, permitiendo
modificar la cantidad de unidades o eliminar productos, permite la seleccidon de un
horario para el retiro y también genera el link para comprar a través de Mercadopago

Mis ordenes: Pagina donde se muestran todas las compras realizadas, con la opcion
de filtrar por fecha y estado de la orden.

Cuenta: Pagina que muestra la informacién de la cuenta y permite cerrar sesion.
Auth: pagina donde iniciar sesién o crear una cuenta.
Impacto RSU: Cuenta informativa sobre la Responsabilidad Social Universitaria

Gracias x tu compra: pagina informativa a la que redirige Mercadopago cuando el
pago fue exitoso

Planes de comida: pagina donde podes armar un plan de comida y comprar el
mismo

Mis planes de comida: Pagina donde visualizas los planes de comida activos tuyos

En el frontend de administracién (para los administradores de la cantina)

1.

Productos: Pagina que muestra una tabla con todos los productos, permitiendo
buscar por nombre o descripcion y filtrar en orden ascendente o descendente por
distintas categorias.

2. Agregar Producto: Pagina con el formulario para agregar un nuevo producto.

3. Editar Producto: Pagina con un formulario para editar la informacién de un producto.

4. Ordenes: Pagina donde se pueden ver todas las érdenes recibidas, filtrar por fecha,
por estado y buscar por id de la orden.

5. Resumenes: Pagina donde se pueden visualizar los resumes de ventas diarios y
mensuales.

6. Cocina: Pagina donde se visualizan las 6rdenes que son enviadas a la cocina para
procesar alli.

7. Planes de comida: pagina para crear y administrar los plane de comida que se
muestran en la cantina

8. Log in: Pagina donde iniciar sesion.

Diagramas

En base de datos tendremos 8 tablas:

1.

Items (productos):

La tabla Items representa el catalogo de productos o articulos disponibles en el
sistema. Cada instancia de Items corresponde a un producto Unico que puede ser ofrecido
para la venta o formar parte de una orden.

36

Esta entidad almacena todas las caracteristicas esenciales que definen un producto,
permitiendo su identificacion, descripcidn, gestidn de inventario y asociacion con otros
elementos del negocio.

Items

+id: string

+name: string

+description: string

+price: float

+stock: int

+category: int

+image_url: string

+waiting_time: int
+asociated_food_plans_ids?: []string

getltems()
getltemByld()
getltemByName()
createltem()
deleteltemByld()
edititem()

2. PreOrder:

La tabla PreOrdenes actia como un repositorio temporal para la informacién de una orden
antes de que se complete el proceso de pago. Su propésito principal es almacenar todos los
detalles necesarios de una compra mientras esta se encuentra en un estado preliminar o
pendiente de confirmacion.

Una vez que el pago de la orden es exitosamente confirmado, los datos contenidos en la
PreOrden se utilizan para generar un objeto Orden definitivo. Este nuevo objeto Orden se
almacena de forma persistente, y consecuentemente, la PreOrden correspondiente es
eliminada de la base de datos. Esto asegura que PreOrdenes mantenga uUnicamente
registros activos de transacciones aun no finalizadas. La tabla PreOrdenes se somete a una
limpieza diaria nocturna, eliminando las pre-6rdenes que no fueron pagadas en el dia.

Estructura y Composicion de PreOrdenes:

Es fundamental comprender que PreOrdenes integra la informacién de los conceptos Cart
(Carrito) y Line (Linea de Articulo) directamente dentro de su estructura. Cart y Line no son
tablas separadas en la base de datos, sino que representan la organizacién interna de los
datos que PreOrdenes contiene.

Dentro de cada PreOrden, se almacena un Cart que, a su vez, contiene una colecciéon de
Lines. Cada Line detalla un articulo especifico incluido en la pre-orden.

Particularidad del Atributo item en Line:

Una caracteristica clave del atributo item dentro de la estructura Line es que no almacena
un item_id (identificador de articulo) sino una "fotografia" o una copia completa del articulo
en el momento de la pre-orden.

Esta aproximacion es crucial por las siguientes razones:
e Preservacion de la Integridad: Si el articulo original (en la tabla items) fuera

modificado o eliminado después de que se cred la PreOrden, la PreOrden (y

37

posteriormente la Orden final) mantendria una referencia precisa y completa del
articulo tal como era cuando se compro.

e Independencia de Cambios Futuros: Evita la pérdida de informacién o referencias
rotas que podrian ocurrir si la PreOrden dependiera de un item_id que podria dejar
de existir o apuntar a datos modificados Por eso permite tener un registro exacto de
las caracteristicas del producto (precio, descripcion, etc.) en el momento de la
compra, lo cual es vital para fines de auditoria, devoluciones o seguimiento.

PreOrders Cart

+lines: []line
+total: int
+totalProducts: int

+id: string
+created_at: string
+email: string
+pick_up_time: string

+cart: Cart

getOrders() Hine
getOrderByld() +item: Item
getOrdersByEmail() +total: int
getOrdersByDate() +totalProducts: int
createOrder() +kitchen: boolean
deleteOrderByld() +plans_quantities?: dict
setOrderAsPaid()

updateOrderStatus()

3. Orders (6rdenes):

La tabla Orders representa el registro persistente y definitivo de las 6rdenes una vez que el
pago ha sido exitosamente confirmado. A diferencia de PreOrders, que es un estado
transitorio, cada entrada en Orders es una transaccion de compra completada y validada.

38

Orders

+id: string

+day_order: int

+email: string

+status: string
+pick_up_time: string
+cart: Cart

+kitchen: boolean
+payment_reference: string

Cart

+lines: []line
+total: int
+totalProducts: int

getOrders()
getOrderByld()
getOrdersByEmail()
getOrdersByDate()
createOrder()
deleteOrderByld()
setOrderAsPaid()
updateOrderStatus()

Line

+item: Item

+total: int
+totalProducts: int
+kitchen: boolean
+plans_quantities?: dict

4. DayOrderCounter:

Es una tabla o entidad disefiada para llevar un contador diario de érdenes. Su objetivo
principal es generar numeros de orden secuenciales para cada dia, facilitando asi un control
organizado de las érdenes para una fecha especifica.

DayOrderCounter

+id: string ("yyyy-mm-dd")
+day_order_number

IncrementNumer()
getNumber()

5. FoodPlans:

Se encarga de definir y administrar los diferentes planes de comida que la Cantina podria

ofrecer a los clientes.

39

FoodPlans

+d: string

+name:string

+activeUntil: string
+basePrice: float
+dayForMaximunDiscount: int
+deleted: boolean
+description: string
+features: []string
+maxDiscount: float

getFoodPlans()
createPlan()
deletePlan()
updatePlan()

6. DailySummaries:

Esta disefiada para almacenar y presentar un consolidado de la actividad de ventas de cada
dia. Su proposito es ofrecer una vista agregada y rapida del rendimiento econémico diario
del negocio, sin la necesidad de consultar y procesar la gran cantidad de o6rdenes
individuales. Contiene la informacion resumida de los articulos vendidos y el ingreso total
generado en una jornada especifica.

Esta tabla se identifica univocamente por un id que corresponde a la fecha del resumen en
formato "aaaa-mm-dd". Contiene la informacion resumida de los articulos vendidos y el
ingreso total generado en una jornada especifica.

Summaryltem es un componente anidado dentro de DailySummaries, no una tabla en si.
Su funcion es detallar la informacién agregada de un articulo especifico dentro de un
resumen diario. En lugar de mostrar cada instancia individual de un articulo vendido,
Summaryltem consolida la cantidad total de unidades de ese articulo que se vendieron y el
ingreso total que generaron. Ademas, puede indicar como esas ventas se distribuyeron
entre los diferentes planes de comida, si es aplicable.

40

DailySummaries

Summaryltem

+id: string ("yyyy-mm-dd")
+Items: Summaryltem
+totalRevenue: float

+name: string
+quantity: int

+total: float
+plans_qguantities?: dict

Addltem()
getSummary()

7. MonthlySummaries:

Cumple una funcion idéntica a DailySummaries, pero a una escala temporal diferente:
consolida la actividad de ventas a nivel mensual.

Su principal distincién es el id, que identifica cada resumen por el mes en formato
"aaaa-mm". Al igual que los resumenes diarios, contiene la informacién agregada de
Summaryltems y el ingreso total, pero agrupando los datos de todo un mes.

MonthlySummaries

Summaryltem

+id: string ("yyyy-mm")
+Items: Summaryltem
+totalRevenue: float

+name: string
+quantity: int

+total: float
+plans_quantities?: dict

Addltem()
getSummary()

8. OrdersForPlans:

Se dedica a registrar las compras o suscripciones de los planes de comida (FoodPlans) por
parte de los usuarios. Representa la instancia en que un cliente adquiere un determinado
FoodPlan, detallando no solo qué plan comprd, sino también cuantas unidades o qué
cantidad de ese plan adquirio.

Esta tabla es crucial para gestionar el consumo y la vigencia de los planes que los usuarios
han prepagado o suscrito. Permite al sistema hacer un seguimiento de cuanto de un plan ha
sido utilizado y cuanto queda disponible.

Su id combina el identificador del plan y el email del usuario, asegurando una referencia
Unica para cada suscripcion de plan.

41

OrderForPlan

+id: str (planld_email)
+email: str
+payment_reference: []string
+plan_id: str

+quantity: int
+used_quantity: int
+total_amount: float

addQuantity()
createOrder()
getOrder()

Diagrama de estado de los pedidos:

Y

pending

La cantina
procesa la orden

Y

processing

La orden esta
lista para retirar

Y

ready

Se reporto algun
problema con la
entrega de la
i orden

delivered " problem

Se soluciono el
problema

Se retiro la orden

X

NOTA: El proceso de gestion de érdenes seguira un flujo estructurado y solo se aplicara a
o6rdenes que han sido pagadas. Tanto la cantina como los usuarios solo pueden ver las
o6rdenes que han sido confirmadas mediante pago; si una orden no ha sido pagada, no se
visualizara en ninguna de las interfaces.

42

Tecnologias elegidas

Frontend: Next.js

Next.js es un framework de React que permite la creacidon de aplicaciones web con
renderizado del lado del servidor y generacion de sitios estaticos. Sus principales
caracteristicas incluyen:

e Renderizado Hibrido: Combina el renderizado del lado del servidor y la generacion
de sitios estaticos, mejorando el rendimiento y la experiencia del usuario.

e Optimizaciéon Automatica: Realiza divisién de cédigo y carga optimizada, reduciendo
los tiempos de carga.

Backend: FastAPI con Python

FastAPI es un framework web moderno y rapido para la construccion de APIs con Python,
basado en estandares como OpenAPl y JSON Schema. Sus ventajas son:

e Alto Rendimiento: Disefado para ser rapido y eficiente en la construccion de APls.

e Facilidad de Uso: Ofrece una experiencia de desarrollo sencilla y documentacién
automatica.

e Soporte para Asincronia: Permite la programacion asincrona, mejorando la
escalabilidad.

Despliegue v Servicios en la Nube: Google Cloud Platform (GCP)

La eleccion de GCP para el despliegue de Cantina UCC no fue solo una decision técnica,
sino una estrategia multifacética que equilibra la escalabilidad y el rendimiento con la
viabilidad econdmica. La disponibilidad de una capa gratuita en GCP fue un factor decisivo
para reducir la barrera de entrada y los costos iniciales del proyecto.

Los servicios especificos incluyen:

e Firestore: Base de datos NoSQL que permite el almacenamiento y sincronizacion de
datos en tiempo real.

e Cloud Run: Servicio que facilita el despliegue de aplicaciones en contenedores,
escalando automaticamente segun la demanda.

e Buckets: Almacenamiento de objetos para guardar imagenes y otros archivos
estaticos.

e Secrets Manager: Gestion segura de credenciales y secretos necesarios para la
aplicacion.

Esta elecciéon de servicios permite una infraestructura escalable y segura, adaptandose a
las necesidades del proyecto.

43

Integracién y Despliegue Continuo: GitHub Actions y Docker Hub

Para garantizar un flujo de trabajo eficiente y automatizado, se implementaran las siguientes
herramientas:

e GitHub Actions: Automatiza los procesos de construccion, prueba y despliegue de la
aplicacion, asegurando que cada cambio en el cédigo se refleje de manera
consistente en el entorno de produccion.

e Docker Hub: Almacena y gestiona las imagenes de contenedores utilizadas en el
despliegue, facilitando la portabilidad y escalabilidad de la aplicacion.

Plataforma de pagos

Tras el analisis comparativo, se concluyé que Mercado Pago es la opcion estratégica mas
sélida para el proyecto. Esta eleccién no se basa en ser la alternativa de menor costo por
transaccién, sino en su capacidad para maximizar la probabilidad de éxito comercial a
través de un conjunto de ventajas cualitativas y cuantitativas.

La decision de qué pasarela de pago utilizar trasciende un simple calculo de comisiones; es
una decision fundamental de experiencia de usuario y marketing. Aunque algunas
alternativas como Uala Bis o Mobbex pueden ofrecer tasas marginalmente inferiores en
ciertos escenarios, Mercado Pago ostenta una posicién de dominio y reconocimiento en el
mercado argentino que ninguna otra plataforma puede igualar.

Este reconocimiento se traduce directamente en una mayor tasa de conversion. Un usuario
que llega al checkout y se encuentra con la opcion de pagar a través de Mercado Pago se
siente en un entorno familiar y seguro. La plataforma ofrece proteccion tanto al comprador
como al vendedor, un factor que disminuye la ansiedad asociada a las compras en linea.
Optar por una pasarela menos conocida para ahorrar una fraccion porcentual en comisiones
podria resultar en un costo mucho mayor derivado del aumento en la tasa de abandono de
carritos. Por lo tanto, la comisién de Mercado Pago puede ser interpretada no como un
gasto, sino como una inversion estratégica en la confianza del cliente y, en ultima instancia,
en la maximizacion de las ventas.

Ademas, Mercadopago resuelve de manera eficiente uno de los mayores desafios del
e-commerce en Argentina: la diversidad de métodos de pago. Con una sola integracién, el
proyecto puede ofrecer a sus clientes la posibilidad de pagar con tarjetas de crédito
(incluyendo planes de cuotas), tarjetas de débito, redes de pago en efectivo
(Rapipago/Pago Facil), transferencias bancarias y, de manera crucial, el saldo disponible en
la cuenta de Mercado Pago, una de las billeteras virtuales mas utilizadas en el pais. Ofrecer
esta gama completa de opciones desde el primer dia sin la necesidad de gestionar multiples
integraciones y contratos es una ventaja operativa y competitiva decisiva.

Correos transaccionales

Para la infraestructura de envio de emails transaccionales se decidié implementar Amazon
Simple Email Service (SES) como proveedor de envio de correos. La eleccion se
fundamenta en varias razones:

1. Costo altamente competitivo: SES opera bajo un modelo de pago por uso, con un
precio de $0.10 USD por cada 1,000 correos enviados, lo cual lo hace

44

extremadamente econdmico a gran escala, especialmente en comparacion con
proveedores dedicados como SendGrid o Mailgun.

2. Escalabilidad y confiabilidad: Al estar construido sobre la infraestructura de AWS,
SES puede manejar millones de correos con una tasa de disponibilidad muy alta, sin
limitaciones diarias restrictivas. Esto lo convierte en una solucién preparada para el
crecimiento del proyecto.

3. Entregabilidad: Aunque requiere una correcta configuraciéon de protocolos como
SPF, DKIM y DMARC, una vez realizada, la tasa de entregabilidad es muy alta,
minimizando la posibilidad de que los mensajes lleguen a la carpeta de spam.

4. Integracién en el ecosistema AWS: El proyecto utilizara Google Cloud para backend
y despliegues, pero optar por SES permite mantener la flexibilidad de trabajar con la
infraestructura de AWS para un servicio tan critico como la mensajeria.

Para garantizar la profesionalidad y la entregabilidad de los correos, se adquirié el dominio
cantinaucc.com a través de Namecheap (por $15.000 por todo un afio). Posteriormente,
se realiz6 la configuracion necesaria en los DNS records para habilitar el envio de correos
desde este dominio mediante SES

Con esta configuracion, los correos transaccionales enviados desde ...@cantinaucc.com
tienen una altisima probabilidad de llegar correctamente a la bandeja de entrada de los
usuarios, evitando problemas de spam o falsos positivos.

Ademas de servir como remitente confiable para la mensajeria transaccional, el dominio
cantinaucc.com se utilizara para la parte web del proyecto asi el dominio permitira
direccionar a los usuarios hacia las dos interfaces de la aplicaciéon (la de clientes
(cantinaucc.com) y la de administradores (admin.cantinaucc.com)), asegurando una
experiencia de navegacion profesional y unificada bajo una misma identidad digital.

Algunas aclaraciones

La eleccion de las distintas tecnologias e integraciones se basa también en la experiencia y
conocimientos del equipo de desarrollo. Estas tecnologias ofrecen una combinacion de
rendimiento, escalabilidad y facilidad de uso que se ajusta a los objetivos del proyecto.
Aunque existen otras alternativas, la familiaridad del equipo con las tecnologias elegidas
reduce los tiempos de desarrollo y mejora la calidad del producto final.

Arquitectura

La arquitectura de la aplicacién Cantina UCC se basa en un modelo cliente-servidor con
un enfoque en servicios en la nube, optimizando el rendimiento, escalabilidad y seguridad.
La aplicacion esta disefiada para ser modular y escalable, con una separacion clara entre
los distintos componentes que interactuan entre si.

1. Arquitectura General

El sistema esta organizado en componentes independientes que interactian entre si a
través de interfaces bien definidas. Cada componente cumple un rol especifico dentro del

45

flujo general de la aplicacion, lo que favorece la flexibilidad y la capacidad de escalar segun
la demanda.

Los principales componentes son:

Frontend (Cliente): Gestiona la interaccion con los usuarios finales y envia
solicitudes al backend.

Frontend (Administrador): Interfaz separada, destinada a la gestién operativa por
parte del personal administrativo.

Backend (API): Proporciona la Iégica de negocio y los servicios de datos necesarios
para el funcionamiento de la aplicacion.

2. Componentes Principales de la Arquitectura en detalle

Frontend: Next.js

El frontend esta dividido en dos interfaces principales:

Clientes: Desarrollado con Next.js, la interfaz para los usuarios permite realizar
compras, gestionar carritos y pagar mediante Mercado Pago. Esta optimizada para
una experiencia movil-first, con renderizado tanto del lado del cliente como del
servidor, lo que mejora el rendimiento.

Administradores: También construido en Next.js, este frontend esta destinado a los
administradores, quienes gestionan productos, pedidos y promociones. Los
administradores acceden a este frontend mediante credenciales otorgadas
manualmente. Este esta adaptado a maovil pero se piensa como una aplicacién de
escritorio.

Backend: FastAPI (Python)

El backend se desarrolla con FastAPIl, que maneja las solicitudes HTTP y gestiona las
interacciones con la base de datos y otros servicios. Esta disefiado para ser rapido y
eficiente, permitiendo la escalabilidad y el manejo asincrono de tareas, como el
procesamiento de pagos o la gestion de productos. El backend se despliega en Google
Cloud Run para asegurar un despliegue escalable y gestionar automaticamente los recursos
segun la demanda.

Infraestructura en la Nube:

Google Cloud Run: El backend (FastAPI) sera desplegado en Google Cloud Run, lo
que permite escalar automaticamente segun la demanda, sin necesidad de
administrar servidores directamente.

GCP Firestore: Base de datos NoSQL utilizada para almacenar los datos de la
aplicacion, como productos y pedidos, entre otros.

Google Cloud Storage (Buckets): Se utilizan para almacenar archivos estaticos,
como imagenes de productos.

46

e Google Cloud Secret Manager: Se utiliza para gestionar credenciales y secretos,
como claves API o credenciales de Mercado Pago, de forma segura.

e GCP Pub/Sub: Para mensajeria interna para desacoplar productores vy
consumidores y propagar eventos.

e Amazon SES: Para emails transaccionales (envio de resumenes y confirmaciones).
Servicios de Terceros
e Mercado Pago: Se integra con la aplicacién para gestionar los pagos.

e Firebase Authentication: Proporciona autenticaciéon y autorizacién para la gestién de
usuarios en ambas interfaces (cliente y administrador).

Integracion y Despliegue Continuo: GitHub Actions y Docker Hub

e GitHub Actions: Automatiza el flujo de trabajo de integracién continua y despliegue
continuo (CI/CD), incluyendo la construccién de la imagen de la aplicacion y
despliegue de la aplicacién tanto en Cloud Run como en Vercel.

e Docker Hub: Se utiliza para almacenar las imagenes Docker de la aplicacion
backend, asegurando portabilidad y facilitando el despliegue en GCP.

3. Diagrama de la Arquitectura

Ty
U Firebase Auth
Amazon SES —x
Bucket \
—_—

p Frontend Admin & Administradores de

la cantina

Basze de Backend II
————{ Frontend Cantina & Clientes / usuarios de

f la cantina
////GCP F'uI::-Sub/ [AP| Mercadopago 1

4. Modelo de Comunicacion

N—

Usuario — Frontend (Cantina o Admin): Los usuarios (clientes o administradores)
interactuan con la aplicacion desde su navegador web.

e Los clientes acceden al Frontend Cantina para realizar pedidos, ver menus y recibir
notificaciones en tiempo real.

e Los administradores utilizan el Frontend Admin para gestionar productos, pedidos y
estadisticas.

47

Frontend <~ Firebase Auth: Ambos frontends se comunican directamente con Firebase
Authentication para gestionar el acceso y la identidad de los usuarios.

e Frontend Admin utiliza un proyecto de Firebase distinto al del frontend de clientes,
con credenciales exclusivas para administradores.

Frontend — Backend (FastAPl en Cloud Run): Ambos frontends se comunican con el
backend mediante una APl RESTful implementada en FastAPI, utilizando peticiones HTTP y
WebSockets para actualizaciones en tiempo real (sin recargar la pagina).

Backend — Firestore (Base de Datos): El backend consulta y actualiza la base de datos
Firestore para manejar informacioén de usuarios, productos, pedidos, ventas y estadisticas.

Backend — Bucket (Google Cloud Storage): El backend guarda y administra las
imagenes (por ejemplo, fotos de productos o logos) en un bucket de Google Cloud Storage.

Frontend — Bucket (Google Cloud Storage): Los frontends consumen directamente esas
imagenes desde el bucket, optimizando el rendimiento y reduciendo la carga sobre el
backend.

Backend — Amazon SES: El backend utiliza Amazon Simple Email Service (SES) para
enviar correos transaccionales a los usuarios (por ejemplo, confirmaciones de pedido,
restablecimiento de contrasefna o notificaciones administrativas).

Backend < GCP Pub/Sub: Las distintas instancias del backend estan sincronizadas
mediante GCP Pub/Sub.

e Cuando ocurre un evento (por ejemplo, un nueva orden o cambio en el estado de la
orden), el backend publica un mensaje en Pub/Sub.

e Todas las instancias del backend reciben ese mensaje, garantizando que cada una
notifique correctamente a los usuarios conectados mediante WebSockets, incluso si
estan distribuidos entre diferentes instancias o IPs.

Backend — APl de Mercado Pago: El backend interactia con la APl de Mercado Pago
para crear enlaces de pago asociados a cada pedido realizado por el usuario.

e Estos links de pago son devueltos al frontend para que el cliente pueda completar la
transaccion desde la interfaz web.

e Una vez realizado el pago, Mercado Pago envia una notificaciéon al webhook
configurado en el backend.

e El webhook procesa la confirmacion de la transaccion, valida el estado del pago y
actualiza la informacién correspondiente en la base de datos (Se crea una orden y
se borra la preOrden).

5. Consideraciones de Escalabilidad y Sequridad

e Escalabilidad: La arquitectura esta disefiada para escalar automaticamente. Google
Cloud Run ajusta los recursos segun el trafico de la aplicacién, mientras que

48

Firestore es una base de datos altamente escalable que maneja cargas de trabajo
intensivas.

Seguridad: Los secretos y credenciales estan protegidos usando Google Cloud
Secret Manager, y Firebase Authentication asegura la gestion de usuarios con
métodos de autenticacion seguros. Ademas, los pagos son realizados Unicamente a
través de mercadopago, que asegura la seguridad de los mismos

3 Implementacién

La implementacién del proyecto se abordara de manera desestructurada, siguiendo una
estrategia iterativa e incremental, guiada por la implementacién de las historias de usuario.

Despliegue inicial

En primer lugar, se desplegara una version minima de la aplicacion, que incluira:

Frontend basico: Se desplegaran ambos repositorios de la interfaz de usuario en
Vercel (recordando que hay un frontend para clientes y otro para administradores de
la cantina).

Backend inicial: Se creara un pipeline de despliegue para la API del backend en
Cloud Run, permitiendo un despliegue continuo. La primera version incluira un
método HTTP GET en la ruta base (/) que devolvera informacioén basica sobre la
aplicacion.

Base de datos: Se configurara y desplegara la base de datos en Firestore,
asegurando que esté disponible para el backend.

Desarrollo basado en historias de usuario

Una vez que la base del sistema esté operativa, se avanzara en la implementacion de las
historias de usuario. Cada historia se desarrollara siguiendo estos pasos:

1.

Desarrollo o modificacion de la interfaz en el frontend correspondiente, asegurando
que el wusuario pueda interactuar correctamente. Esto puede implicar la
implementacién de nuevos componentes, la modificacién de un contexto, o ajustes
en el layout de la aplicacion en Next.js.

2. Implementacion de endpoints en la API para obtener o enviar datos, asegurando la
correcta manipulacion de la informacién en el backend y la base de datos (crear,
leer, actualizar o eliminar segun sea necesario).

4 Pruebas

Para el proyecto Cantina UCC, se implementé una estrategia de pruebas centrada en la
validacién de la experiencia del usuario final, asegurando que cada funcionalidad cumpla
con los requisitos y expectativas definidos. El enfoque principal fue la ejecucién de Pruebas

49

Funcionales, un proceso disefiado para simular escenarios de uso reales y validar los flujos
de trabajo criticos desde la perspectiva tanto de los clientes como de los administradores.

Con el fin de asegurar que el sistema satisficiera estas necesidades, el objetivo fue validar
el cumplimiento de los requisitos funcionales descritos en las historias de usuario. Este
enfoque permitié verificar de manera integral la usabilidad de las interfaces, el correcto
funcionamiento del sistema y la comunicacién entre el frontend (Next.js), el backend
(FastAPI) y servicios esenciales como Firestore, Mercado Pago y Amazon SES.

A continuacién, se detallan los casos de prueba disefados para validar cada historia de

usuario.

Casos de Prueba Funcionales:

Rol: Usuario Invitado

Historia de
Usuario

Pasos a Ejecutar

Resultado Esperado

Quiero explorar el
catalogo de
productos.

1. Acceder a la pagina principal.
2. Observar la lista de productos.
3. Utilizar la barra de busqueda
para encontrar un producto.

4. Filtrar productos por categoria.

El catalogo se muestra
correctamente con
imagenes, nombres,
descripciones y precios. La
busqueda vy el filtro funcionan
como se espera.

Quiero poder
agregar productos
al carrito.

1. Seleccionar un producto del

catalogo y hacer clic en "Agregar”.

2. Ir al carrito.
3. Aumentar la cantidad de un
producto.

4. Eliminar un producto del carrito.

Los productos se afiaden al
carrito. El total y las
cantidades se actualizan
correctamente. Los
productos se pueden
eliminar.

Rol: Usuario Registrado

Historia de
Usuario

Pasos a Ejecutar

Resultado Esperado

Quiero poder iniciar
sesion utilizando mi
correo electrénico o
cuenta de Google.

1. Ir a la pagina de "Iniciar Sesién".
2.a Elegir “continuar con Google” e
ingresar una cuenta de google. FIN

2.b Elegir “continuar con Email”

3.a Si ya tenes cuenta, ingresar correo
y contrasena valida y hacer click en

“iniciar sesion”. FIN

3.b Si no tenes cuenta elegir “crear

cuenta”.

4. Usar un correo electrénico valido y

hacer click en “enviar codigo de
verificaciéon”

El usuario puede
acceder a una cuenta
continuando con google
o continuando con mail
personal distinto a
google, si nunca ha
iniciado sesion, debera
crear una cuenta y
luego podra ingresar
con mail y contrasena

50

5. Ir al email ingresado y copiar el
codigo, ingresarlo en el campo que lo
pide y hacer click en “verificar cédigo”
6. Luego ingresa una contrasefa 2
veces y hacer click en “crear cuenta”.
Con la cuenta creada ir al punto 3a

Quiero poder
realizar una compra
y poner un horario
para retirarlo.

1. Agregar productos al carrito, desde
el catalogo o sumando cantidades en
el carrito

2. Seleccionar un horario de retiro
disponible.

3 Hacer click en “confirmar Carrito”

5. Hacer clic en "Pagar con Mercado
Pago" y completar la transaccion.

El pago se procesa
exitosamente. La orden
se genera en el sistema
con el horario de retiro
correcto.

Quiero recibir una
confirmacién por
correo al finalizar
una compra. con
las instrucciones
para retirar el
pedidoy la
informacion de la
transaccion.

1. Realizar una compra exitosa (seguir
los pasos del caso anterior).

2. Revisar la bandeja de entrada del
correo asociado a la cuenta.

Se recibe un correo
electrénico con el
resumen del pedido,
numero de orden y
horario de retiro.

Quiero poder
comprar planes de
comida por varios
dias. Para recibir
descuentos

1. Ir a la seccion "Planes de Comida".
2. Seleccionar un plan y la cantidad de
dias/menus.

3. Proceder al pago a través de
Mercado Pago.

El pago se completa y
el plan de comidas se
acredita correctamente
en la cuenta del
usuario. Se realizan los
descuentos
correspondientes.

Quiero poder
aplicar un plan de
comida en una

1. Asegurarse de tener un plan de
comida activo (comprado previamente
y no vencido)

2. Seleccionar en la pagina principal la
opcion “comprar con planes de
comida”

El precio del producto
se descuenta a cero. El
sistema descuenta un
uso del plan de comida
activo. Se Puede ver
una nueva orden con la

compra. 3. Seleccionar las comidas disponibles . .
. comida seleccionada y
para el plan de comida . .
. el horario de retiro
4. Proceder al checkout. (Elegir un .
.) seleccionado

horario y confirmar uso del plan)

Quiero ver el 1. Iniciar sesién.

historial de mis
compras anteriores.
para poder ver la
informacion de
todos mis pedidos y

2. Navegar a la seccion "Mis
Ordenes".

3. Revisar el listado de compras.

4. Navegar a "Mis Planes" para ver los
planes adquiridos.

El historial muestra un
listado correcto de
todas las compras y
planes, con sus detalles
(fecha, total, estado).

51

mis planes de
comida.

Rol: Administrador de la Cantina

Historia de
Usuario

Pasos a Ejecutar

Resultado Esperado

Quiero poder
agregar, editar o
eliminar productos.

1. Iniciar sesion como administrador.
2. Ir a "Productos" y hacer clic en
"Agregar Producto".

3. Llenar el formulario y guardar.

4. Buscar el nuevo producto y hacer
clic en "Editar".

5. Modificar el precio y guardar.

6. Eliminar el producto.

El producto se crea,
actualiza y elimina
correctamente. Los
cambios se reflejan en
el catalogo para
clientes.

Quiero poder
visualizar y
administrar los
pedidos de los
usuarios.

1. Iniciar sesidon como administrador.
2. Ir a la seccién "Ordenes".

3. Filtrar érdenes por fecha y estado.
4. Cambiar el estado de una orden de
"Pendiente" a "procesando" y luego a
"Listo para retirar".

Las ordenes se
muestran
correctamente. Los
filtros funcionan. El
estado de la orden se
actualiza y el cambio es
visible para el cliente.

Quiero poder
obtener un informe
diario y mensual de
las compras.

1. Iniciar sesién como administrador.
2. Ir a "Resumenes".

3. Seleccionar la vista "Diaria" y
verificar los montos.

4. Cambiar a la vista "Mensual" y
verificar el total consolidado.

5. Realizar una compra en la cantina
como un cliente.

6. Realizar la compra de un plan de
comida como un cliente

7 Las compras se ven reflejada en el
resumen diario y mensual

El sistema muestra los
montos totales de
ventas correctos para
los periodos
seleccionados,
desglosando los
productos vendidos.

Quiero poder
imprimir los tickets
de los pedidos.

1. En el listado de "Ordenes",
seleccionar una orden.

2. Hacer clic en el boton "Imprimir
Ticket".

Se abre el didlogo de
impresion del navegador
con un formato de ticket
claro que contiene los
detalles del pedido.

Quiero tener una
pantalla con las
ordenes para la
cocina.

1. Iniciar sesidbn como administrador.
2. Navegar a la pantalla "Cocina"

La pantalla muestra las
ordenes activas en un
formato claro y facil de
leer para el personal de
cocina, y se actualiza en
tiempo real cuando

52

desde el panel de
“ordenes” enviamos una
alacocinaola
retiramos de aca.

Quiero poder crear
y gestionar los
planes de comida

1. Navegar a la pagina "Planes de
comida".

2. Hacer clic en una opcién para
"Crear Plan".

3. Llenar el formulario con los detalles
del plan (ej. nombre, descripcion,
precio base, descuentos, fecha de
vigencia).

4. Guardar el nuevo plan.

5. Buscar el plan recién creado en la

El plan se crea
exitosamente y se lista
en la pagina de
administracion . El plan
nuevo (y sus
modificaciones) se
refleja en la pagina
"Planes de comida" del

lista y seleccionar "Editar" cliente.
6. Modificar todos los campos

posibles y guardar los cambios.

Aclaracion sobre el Entorno de Pruebas

Un aspecto fundamental de la estrategia fue la decisiébn de realizar las validaciones
funcionales directamente sobre el entorno de produccion. Es crucial aclarar este punto:

1. Contexto del Proyecto: El desarrollo fue llevado a cabo por un anico programador
como parte de un proyecto académico. No se trataba de un equipo de desarrollo
gestionando un sistema comercial.

2. Estado de la Aplicacion: Si bien la infraestructura estaba desplegada en un
entorno "en vivo", la aplicacion ain no se encontraba en una fase de produccion
real. No habia sido lanzada a la comunidad universitaria, no tenia usuarios activos
(mas alla del desarrollador) y las Unicas transacciones monetarias eran pruebas
controladas con montos minimos.

Bajo estas circunstancias, se tomd una decision pragmatica: mantener dos entornos
idénticos (produccion y staging) habria representado una complejidad y un costo
innecesarios para un proyecto de esta escala y en esta etapa. El objetivo era agilizar la
validacién de funcionalidades en una configuracion idéntica a la final, sin el riesgo de
impactar a una base de usuarios que, en ese momento, era inexistente.

Reconocemos que esta practica no es el estandar en un entorno profesional para
sistemas ya operativos. Se subraya que, para el mantenimiento futuro y la implementacion
de nuevas funcionalidades una vez la aplicacion esté en uso, es imprescindible configurar
un entorno de preproduccion (o staging). Este entorno replicaria la infraestructura de
produccién y permitiria probar cualquier cambio de manera aislada antes de su lanzamiento
definitivo, garantizando la estabilidad del servicio.

Otras aclaraciones

No se implementaron suites de pruebas unitarias o de integracion automatizadas. La
validacién de la correcta interaccion entre el frontend (Next.js), el backend (FastAPI) y los

53

servicios de terceros (Firestore, Mercado Pago) se abord6 a través de las pruebas
funcionales de los flujos completos de usuario.

54

IMPACTO ECONOMICO

Para el impacto econdmico se estimaron los gastos operativos asociados con la
infraestructura de nube (Google Cloud Platform - GCP, Vercel y Amazon SES) y el
procesamiento de pagos (Mercado Pago) bajo tres escenarios de uso: 100, 1,000 y 5,000
compras diarias.

1. Metodologia y Supuestos Clave

A continuacién se detallan los supuestos fundamentales para la estimacién de costos.

Escenarios Definidos:

Se evaluaran tres niveles operativos:
e Escenario 1 (Baja Escala): 100 compras/dia (~3,000 compras/mes).
e Escenario 2 (Media Escala): 1,000 compras/dia (~30,000 compras/mes).
e Escenario 3 (Alta Escala): 5,000 compras/dia (~150,000 compras/mes).

Pila de Infraestructura:
e Backend y Base de Datos (GCP): Servicios en us-central1 (lowa).
o Cloud Firestore
o Cloud Run.
o Cloud Storage.

e Frontend (Vercel): Plataforma Vercel para Next.js.
e Amazon SES
Estimacién de uso por compra

Para realizar una estimacién de costos precisa y relevante, se establecieron una serie de
supuestos sobre el consumo de recursos por cada "compra" o "sesion de usuario" exitosa.
Estas cifras representan un promedio agregado de las interacciones necesarias para
completar un pedido, desde la navegacién hasta la confirmacién, y tienen en cuenta las
particularidades de la arquitectura implementada.

Consumo GCP por Compra:

Los siguientes valores son estimaciones promedio por cada compra exitosa en la aplicacion,
cubriendo tanto las operaciones del cliente como las de los administradores:

Lecturas Firestore: 85

55

Una unica compra implica multiples operaciones de lectura en la base de datos a lo largo
del recorrido del usuario, el proceso del backend, y las interacciones post-compra. Esto

incluye:

e Fase Pre-compra y durante la compra (aproximadamente 75+ lecturas):

O

Lectura del catalogo de productos (inicial y posibles filtros/busquedas, que
pueden ser varias lecturas). (50 o mas productos)

Lectura de productos en la pantalla del carrito de compras de compras.
Lectura de la informacion del usuario para el checkout.

Lecturas asociadas a la légica de negocio para validar o actualizar planes de
comida (ej., verificar existencia de plan).

e Fase Post-compra (aproximadamente 8-10 lecturas):

o

Lectura de para la confirmacion enviada por email.

Lectura del historial de pedidos del usuario (Mis Ordenes), donde la nueva
compra aparecera. Se asume que el usuario revisara su historial después de
una o varias compras.

Lecturas para los administradores de la cantina al visualizar las nuevas
6rdenes (Ordenes y Cocina), lo cual puede implicar varias lecturas para
filtrar, ordenar o ver detalles.

Lectura del estado actualizado del FoodPlan o OrdersForPlans si se utilizd un
plan de comida, para reflejar el consumo.

Este numero (85) es una estimacion agregada que intenta cubrir el flujo completo de una
compra exitosa y las operaciones auxiliares necesarias, tanto inmediatas como posteriores,
tanto del cliente como de la administracion, para considerar todo el ciclo de vida de la
informacion de esa compra.

Escrituras Firestore: 10

Las operaciones de escritura son fundamentales para registrar el estado de la compra y
actualizar los datos. Esto incluye:

e Creacion de la PreOrden con sus detalles.

e Varias escrituras post-pago, que son cruciales:

o

Creacion de la Order definitiva (con sus items, estado, etc.).
Actualizacion del DayOrderCounter.

Actualizacion o creacion de DailySummaries y MonthlySummaries
(consolidados de ventas).

Actualizacion del OrdersForPlans o decremento de unidades de un FoodPlan
si se utiliza.

56

o Eliminacién de la PreOrden tras la confirmacion del pago.

Cada una de estas acciones puede implicar una o mas escrituras, justificando el promedio
de 10 por compra.

Solicitudes Cloud Run: 15

Cada interaccion del frontend con el backend se traduce en una solicitud HTTP a Cloud
Run. Una compra promedio involucra:

e Una solicitud para cargar el catalogo, detalles de productos del carrito.

e La solicitud para iniciar el proceso de pago con Mercado Pago (generar la URL de
pago).

e Una solicitud crucial: el webhook de Mercado Pago que notifica al backend sobre el
estado del pago.

e Solicitudes para verificar el estado de la orden o acceder al historial post-compra.

e Solicitudes de la interfaz de administracion para ver érdenes recientes o resimenes
diarios.

El nimero 15 es un promedio que abarca la ruta completa de un usuario desde la
navegacion inicial hasta la confirmacién del pedido, incluyendo las interacciones de los
servicios (como el webhook) y las consultas subsiguientes relevantes.

Egreso Cloud Storage: 10MB (hacia Sudamérica)

El Egreso (o transferencia de datos saliente) es el cargo que se aplica por el volumen de
datos (en GB) que sale de la red del proveedor de la nube desde la region de origen hacia
un destino externo, como: Internet (que incluye a tus usuarios en Sudamérica) u otra regiéon
de la nube.

En nuestro caso, el "egreso a Sudamérica" es el costo directo por cada GB que los usuarios
sudamericanos descargan o acceden desde el almacenamiento.

Una sesién de compra no solo carga una imagen, sino que el usuario navega por el
catalogo de productos. Los 10 MB representan un catalogo con aproximadamente unas 35
imagenes.

Operaciones de Clase B: 40

Las Operaciones de Clase B son cargos que se aplican por ciertas solicitudes realizadas a
tu almacenamiento en la nube que generalmente implican la lectura del estado existente de
los objetos 0 metadatos, pero no modifican el estado de los datos.

Son consideradas operaciones de "baja frecuencia" o de menor impacto en los recursos del
sistema en comparacién con las de Clase A (Operaciones de mutacién de estado o de alto
consumo. (Ej.: Subir objetos Insert/Update)).

57

Cuando un usuario en Sudamérica descarga un archivo (por ejemplo, de 5 MB) de nuestro

bucket:

1. Se registra una operacién de Clase B (la solicitud Get para obtener el archivo). Clase
B cobra por el acto de solicitar el dato (la llamada API, independientemente de
donde vaya el dato).

2. Se registra una transferencia de salida (Egress) de 5 MB dirigida a Sudamérica. El
egreso cobra por el volumen del dato transferido fuera de la regién (los GB
descargados).

Las 40 operaciones por compra se justifican para un catalogo de 35 productos mas la vista
de imagenes en resumenes de orden por parte del admin y del cliente

Resumen consumos GCP:

e |Lecturas Firestore: 85.

e Escrituras Firestore: 20.

e Solicitudes Cloud Run: 15.

e Egreso Cloud Storage: 10MB (hacia Sudameérica).

e Operaciones Cloud Storage (Clase B): 40.

Uso de Vercel (frontend):

El frontend de Cantina UCC esta desplegado en Vercel (Next.js), una plataforma que utiliza
un modelo de costos basado en planes fijos que incluyen grandes paquetes de servicios
clave, como la transferencia de datos y las solicitudes.

La unica métrica que se espera que tenga un impacto financiero significativo en los
escenarios definidos es el Fast Data Transfer (FDT), que mide el volumen de datos que la
aplicacion entrega desde la red global de Vercel hacia los usuarios finales.

No se espera que otras métricas generen un costo significativo dentro del rango normal de
operaciéon, dado que la aplicacion esta disefiada para manejar compras internas de una
universidad y no grandes picos de trafico viral. Sin embargo, estas métricas deben ser
monitoreadas en la puesta en produccién de la aplicacion:

Limite del
Métrica Riesgo de Costo y Escenario de Disparo
Plan Pro 9 y P
Riesgo bajo. El escenario de mayor uso (E3: 150k
Edge L
. compras/mes) genera solo ~2.25M de solicitudes. El
Requests 10 millones . ,
. limite de 10 M es muy alto para la carga de trabajo
(Solicitude por mes . g
esperada, y el excedente es marginal ($2.00 por millon
s al Edge) 9])

58

10 GB Riesgo medio. Si la configuracién del caché
Fast Origin ratuito (ISR/Headers) falla, se podria generar una alta
Transfer 8ue o Dago transferencia de datos desde el backend de GCP a
(FOT) g0 pag Vercel. Un FOT elevado indica un fallo de eficiencia que
por uso) . f
debe corregirse, mas que un problema de escala.
I(;natigr::izati Riesgo bajo. Solo se dispara cuando se suben y
or? _ | 300 KB (plan | transforman nuevas imagenes. Dado que el menu de la
gratuito) cantina no cambia radicalmente todos los dias, se
Transform .
. espera que este costo sea despreciable.
ations
Function Gran Riesgo muy bajo. La légica pesada de negocio y pagos
Invocation volumen reside en el backend de GCP. El uso de funciones
s /| CPU | . . serverless de Vercel para el frontend deberia ser
. incluido .
Duration minimo.

Firebase Authentication

Se asume < 50,000 MAU

(usuarios activos por mes) en todos los escenarios,
manteniéndose dentro del nivel gratuito. Superar este limite activaria costos adicionales.

Comisiones de Mercado Pago

Se analizan las tasas porcentuales para Checkout/Link de Pago en Argentina.

Consumo amazon SES por Compra

3 emails (confirmacion de compra, estado de orden lista, estado de orden entregada)

2. Analisis de Costos Estimados por Componente
Costos de GCP (us-central1)

El céalculo de costos se deriva directamente de la identificacion del volumen de sobreuso
para cada servicio, una vez agotada la cuota gratuita.

Tabla resumen de los umbrales clave de la capa gratuita (Free Tier)

Componente GCP Limite Diario (FD) Limite Mensual (30 dias)
Cloud Run Solicitudes N/A 2,000,000

Firestore Lecturas 50,000 1,500,000

Firestore Escrituras 20,000 600,000

Storage Ops Clase B N/A 50,000

59

Egresos de Red (Internet) N/A 200 GiB

La gestion de la Capa Gratuita de Firestore requiere una mencién especifica. Sus limites
estan definidos diariamente: 50,000 lecturas y 20,000 escrituras. Asumiendo un consumo
perfectamente uniforme a lo largo del mes, el limite efectivo de 30 dias es de 1,500,000
lecturas y 600,000 escrituras. Si el patrén de uso no fuera uniforme (por ejemplo, picos de
trafico), cualquier consumo que exceda la cuota diaria seria facturable inmediatamente,
incluso si el total mensual se mantiene cerca del limite agregado.

Las tarifas base aplicadas para el calculo del excedente son las siguientes, basadas en los
precios predeterminados de GCP:

Componente GCP Tarifa Unitaria (USD) Unidad de Medida
Cloud Run Solicitudes $0.40 ig[i;ifr?ss’ooo de
Firestore Lecturas $0.03 Por 100,000 Lecturas
Firestore Escrituras $0.09 Por 100,000 Escrituras
Storage Ops Clase B $0.0004 Por 1,000 Operaciones
Egresos de Red (Internet) $0.085 Por GiB (Gigibyte)

Se procede a calcular el excedente de uso para cada componente y escenario, aplicando
las tarifas definidas:

Escenario de Consumo Bajo (3k Compras/Mes)
El volumen total de consumo es marginal:

e Cloud Run 45k

e Firestore Lecturas 255k

e Firestore Escrituras 60k

e Storage Ops B 60k

e [Egreso 29.3 GiB

Combonente Consumo Limite Excedente Costo Costo
P Total Gratuito Unitario Mensual
g'(;’S”d U e 2.0M 0 $0.40/M $0.00

60

FAEsoE 255k 15M 0 $30.00M | $0.00
Lecturas

RS 60k 0.6 M 0 $90.00/M $0.00
Escrituras

Storage Ops | 6ok 50k 10k $0.40/M $0.0004
Eg;eso de | 293 GiB 200 GiB 0 $0.085/GiB | $0.00

El costo total facturado es de $0.00 (después del redondeo del excedente minimo en
Storage Ops B). Este nivel de trafico es ideal para la fase de desarrollo, pruebas de
concepto, o aplicaciones de bajo volumen, ya que opera casi en su totalidad dentro de la
capa gratuita ofrecida por GCP.

Escenario de Consumo Medio (30k Compras/Mes)

El consumo total se incrementa a:

Cloud Run 450k
Firestore Lecturas 2.55 M
Firestore Escrituras 0.6 M

Storage Ops B 0.6 M

Egreso 293.0 GiB

Calculos Detallados del Excedente Facturable:

1.

Cloud Run Solicitudes: 450k solicitudes se mantienen muy por debajo del limite de
2.0 M. Costo: $0.00.

Firestore Lecturas:
o Consumo Total: 2.55 M. Limite Gratuito: 1.5 M.
o Excedente Billable: $2,550,000 - 1,500,000 = 1,050,000 Lecturas.
o Costo: (1,050,000/100,000)x$0.03=10.5x$0.03=$0.32.
Firestore Escrituras:
o Consumo Total: 0.6 M (600K). Limite Gratuito: 0.6 M.
o Excedente Billable: 0. Costo: $0.00.

Storage Ops Clase B:

61

o Consumo Total: 0.6 M (600k). Limite Gratuito: 50k (0.05 M).
o Excedente Billable: $600,000 - 50,000 = 550,000 Operaciones.
o Costo: (550,000/1,000,000)x$0.40=0.55x$0.40=$0.22.
5. Egreso de Red (GiB):
o Consumo Total: 293.0 GiB. Limite Gratuito: 200 GiB.

o Excedente Billable: 293.0 GiB-200.0 GiB=93.0 GiB.
o Costo: 93.0 GiBx$0.085/GiB=$7.91.

El costo total facturado es de $8.45. En este nivel, la aplicacion ha superado el umbral de
la Capa Gratuita y el costo del Egreso de Red ya se establece como el impulsor de costos
dominante.

Escenario de Consumo Alto (150k Compras/Mes)

El consumo total escala significativamente

Cloud Run 2.25 M
Firestore Lecturas 12.75 M
Firestore Escrituras 3.0 M
Storage Ops B 3.0 M
Egreso 1,464.8 GiB.

Célculos Detallados del Excedente Facturable:
1. Cloud Run Solicitudes:
o Excedente Billable: 2.25 M-2.0 M=0.25 M Solicitudes.
o Costo: (0.25 M/1 M)x$0.40=$0.10.
2. Firestore Lecturas:
o Excedente Billable: 12.75 M-1.5 M=11.25 M Lecturas.
o Costo: (11.25 M/100,000)x$0.03=112.5x$0.03=$3.38.
3. Firestore Escrituras:
o Excedente Billable: 3.0 M-0.6 M=2.4 M Escrituras.
o Costo: (2.4 M/100,000)x$0.09=24.0x$0.09=$2.16.
o Costo Total Firestore: $3.38+$2.16=$5.54.
4. Storage Ops Clase B:
o Excedente Billable: 3.0 M-0.05 M=2.95 M Operaciones.

o Costo: (2.95 M/1 M)x$0.40=2.95x$0.40=$1.18.

62

5. Egreso de Red (GiB):
o Excedente Billable: 1,464.8 GiB-200.0 GiB=1,264.8 GiB.

o La tarifa de $0.085/GiB aplica para el tramo de 200 GiB a 10,240 GiB.
o Costo: 1,264.8 GiBx$0.085/GiB=$107.51.

El costo total asciende a $114.33, confirmando la predominancia del Egreso de Red, que
consume casi la totalidad del presupuesto operativo.

Correccion del 3er escenario
Sin embargo, al utilizar la calculadora de precios de Google Cloud Platform con los mismos

parametros de consumo, el costo total estimado para el tercer escenario asciende a USD
214. Link a los resultados del calculo

Cost details =3 UsD ~

+ Add to estimate

/7 Cloud Run $5.05 &
DATABASES $£12.96

Firestore () $1296 3
STORAGE $196.00

/ Cloud Storage $196.00 3

ESTIMATED COST $214.01 /mo

63

https://docs.google.com/spreadsheets/d/1oEDqZBdYckOA4eCx2Wa2mApxkv2vjfuBUDKKCiN3Khc/edit?usp=drive_link

Por lo que vamos a tomar este valor como valor final para el 5to escenario por que
suponemos que esta teniendo mas cosas en cuenta que se nos pueden haber pasado de

largo

Costos de Vercel

Teniendo en cuenta que la unica métrica analizada es el FDT, los costos en los distintos
escenarios son los siguientes:

Escenario 1 (100

Escenario 2 (1,000

Escenario 3 (5,000

Métri
etrica compras/dia) compras/dia) compras/dia)

FDT Consumo | 45 g 300 GB 1,500 GB

Mensual

Limite Plan . . Superado (Requiere Superado (Requiere

Hobby 100 GB incluido Plan Pro) Plan Pro)

Limite Plan Pro

1 TB (1,024 GB) incluido

1 TB (1,024 GB)
incluido

Superado (476 GB
de excedente)

Costo FDT
Adicional

$0.00

$0.00

$104.72

Total Vercel

$0.00

$20.00 (Plan Base)

$124.72

Costos de Mercadopago

El costo es un porcentaje variable sobre las ventas, dependiente del plazo de acreditacién

elegido.

Estructura de Tasas (Incluyendo 21%

Checkout/Link de Pago en Argentina son :

e |nmediata: 7.61%

e 10 Dias: 5.31%

e 18 Dias: 4.10%

e 35 Dias: 1.80%

IVA): Las tasas efectivas totales para

Tabla de tasas de comision de Mercado Pago

Plazo de Disponibilidad Tasa Base (%) | IVA (21%) Tasa Total (%)

Al instante 6.29% 1.32% 7.61%

64

10 dias 4.39% 0.92% 5.31%

18 dias 3.39% 0.71% 4.10%

35 dias 1.49% 0.31% 1.80%

Este costo escala linealmente con la facturacion y sera el componente dominante del gasto
operativo a medida que la aplicacién crezca.

Costos de Amazon SES

Emails por compra

Cada compra genera 3 correos.

Escenario 1: 100 compras/dia — 300 emails/dia — ~9,000 emails/mes.

Escenario 2: 1,000 compras/dia — 3,000 emails/dia — ~90,000 emails/mes.

Escenario 3: 5,000 compras/dia — 15,000 emails/dia — ~450,000 emails/mes.

Costo = (emails/mes + 1,000) x $0.10 USD

1.

2.

3.

Escenario 1 — Baja escala
9,000 emails/mes — (9,000 + 1,000) x $0.10 = $0.90 USD/mes

Escenario 2 — Media escala
90,000 emails/mes — (90,000 + 1,000) x $0.10 = $9 USD/mes

Escenario 3 — Alta escala
450,000 emails/mes — (450,000 + 1,000) x $0.10 = $45 USD/mes

4. Analisis Costo-Beneficio Conciso

Costos de Infraestructura (GCP + Vercel + amazon SES): El riesgo financiero es
bajo. Los costos varian desde ~$0.90/mes (100 compras/dia) hasta ~$383/mes
(5,000 compras/dia). La infraestructura es asequible y escalable. La principal
decision es la ftransicion al plan Pro de Vercel (al superar aprox las 250
compras/dia).

Costos de Procesamiento de Pagos (Mercado Pago): Es el factor de costo
principal y variable. Las comisiones (entre 1.80% y 7.61% segun el plazo de entrega
en mayo 2025) impactan directamente la rentabilidad. La eleccién del plazo de
acreditacion es una decision estratégica clave (margen vs. flujo de caja).

Viabilidad: La viabilidad econdmica depende del volumen de ventas y del margen
por transaccion para cubrir las comisiones de Mercado Pago. Sin embargo la cantina

65

ya trabaja con cobros a través de Mercadopago QR que aplica las mismas tasas de
cobro, por lo que no que ya deberian estar adaptados a las comisiones que aplica
esta plataforma. Por otro lado, la infraestructura no es una barrera significativa en
estos niveles de escala.

Gasto en relacién a las Ventas (En el escenario de mayor gasto 5,000
compras/dia): Asumiendo un promedio de $2,000 ARS por compra, el costo total de
infraestructura (~$383 USD/mes) representa aproximadamente sélo el 0.195% del
volumen de ventas mensual ($2.000 x 5.000 x 30 = $300.000.000 ARS, o ~$200.000
USD con dolar a $1500). Por lo que sea cual sea el escenario, el aumento del
consumo de recursos y de los costos en los servidores se justifica automaticamente
por el aumento de las ventas que disparan estos costos. Haciendo el mismo calculo
suponiendo que los precios se nos dispararan a $1000 USD y manteniendo el nivel
de ventas (suponiendo que subestimamos los costos de la infraestructura), ese
monto (los 1.000 USD) representarian un 0.5% del monto total de ventas. Una cifra
mas que aceptable en comparacién con las comisiones que cobra mercadopago

Potencial de Optimizacion de GCP: Si se configura adecuadamente el caché de
las imagenes del catalogo de productos en Vercel, asegurando que solo se soliciten
las imagenes al bucket de Cloud Storage una vez al afio (o cuando la imagen se
actualiza, cambiando su nombre), el componente de Egreso de Red de GCP
($107.51) se podria eliminar, reduciendo el costo total de GCP a ~$18/mes en el
Escenario 3.

Volviendo a recalcar, si la configuracion del servidor es adecuada (no genera gastos
innecesarios), cualquier gasto infraestructural se vera justificado por el incremento
correspondiente en las ventas; no obstante, dicho gasto puede monitorearse y
optimizarse para maximizar la eficiencia del sistema.

5. Para tener en cuenta

Optimizar Mercadopago: Analizar flujo de caja vs. margen para elegir el plazo de
acreditacion 6ptimo.

Gestionar Costos en GCP: Usar Alertas de Presupuesto para monitorear (no limitar)
el gasto. Considerar Cuotas para limitar proactivamente el uso de recursos si es
necesario.

Gestionar Costos en Vercel: Monitorear FDT (Fast Data Transfer) en el Dashboard
de Usage. Optimizar imagenes/frontend para retrasar la necesidad del plan Pro. En
Pro, usar Spend Management para alertas o pausas automaticas.

6. Resumen de Resultados y Conclusién Final

Resumen de Costos:

Infraestructura (GCP + Vercel + SES):

o 100 compras/dia: ~$0.90 USD/mes.

66

o 1,000 compras/dia: ~$37 USD/mes.

o 5,000 compras/dia: ~$383 USD/mes.

e Procesamiento de Pagos (Mercado Pago): Costo variable entre 1.80% y 7.61% del
valor de cada transaccion.

El analisis detallado demuestra que Cantina UCC es un proyecto econdmicamente factible y
altamente escalable desde el punto de vista operativo. La infraestructura tecnoldgica
basada en Google Cloud Platform (GCP) y Vercel permite soportar desde 0 hasta 5.000
compras diarias con costos mensuales que oscilan entre $0.90 y $383 USD, dependiendo
del volumen de uso. Esta estructura de costos progresiva y predecible ofrece una base
sélida para el crecimiento sostenido del sistema, sin representar un riesgo financiero
significativo en las etapas iniciales.

El principal componente variable en los costos operativos es la comisién de Mercado Pago,
que depende directamente del volumen de ventas y del plazo de acreditacion elegido. Este
aspecto, sin embargo, puede ser optimizado estratégicamente segun las necesidades de
flujo de caja o margenes de ganancia esperados. La existencia de multiples opciones de
acreditacion con tasas diferenciadas permite a los administradores del sistema adaptar el
modelo econémico en funcién de la situacion particular del negocio.

Ademas, la posibilidad de permanecer dentro de los niveles gratuitos en GCP hasta escalas
considerables (por ejemplo, hasta 1.000 compras diarias) reduce significativamente la
barrera de entrada, facilitando el lanzamiento y consolidacion del servicio sin requerir una
inversion inicial significativa en infraestructura.

A estos factores se suma que ciertos costos pueden ser compensados indirectamente a
traves de:

e Un posible aumento en las ventas, producto de una experiencia de compra mas agil,
y la fidelizacion de clientes al incluir los planes de comida.

e Beneficios no tangibles que, aunque dificiles de cuantificar, generan un alto valor
para la institucion: reduccion de filas, inclusidon digital, conciencia ecoldgica,
fortalecimiento del compromiso social y mejora del clima institucional. Estos
elementos contribuyen a consolidar una imagen positiva del servicio, a justificar su
implementacion y a facilitar el apoyo institucional o incluso la financiacion externa.

67

RSU

La Responsabilidad Social Universitaria (RSU) en la Universidad Catélica de Cdérdoba
(UCC) se entiende como la capacidad y compromiso institucional para responder a las
necesidades de transformacion de la sociedad en la que esta inmersa, a través del ejercicio
de sus funciones sustantivas: docencia, investigacion, extension y gestion interna.

En este marco, el proyecto de tesis "Cantina UCC" se alinea plenamente con los principios
de la RSU al abordar una problematica concreta dentro de la comunidad universitaria: las
largas filas y tiempos de espera en la cantina durante los horarios de mayor afluencia. A
través del desarrollo de una aplicacion web responsive, que permite realizar pedidos vy
pagos anticipados, se busca mejorar la calidad de vida de estudiantes, docentes y personal
administrativo, optimizando su tiempo y su experiencia en el campus.

Ademas, el proyecto promueve la inclusion digital, ya que ofrece una plataforma intuitiva y
accesible para todo tipo de usuarios, independientemente de su familiaridad con la
tecnologia.

En el plano ambiental, Cantina UCC también contribuye activamente a la sostenibilidad al
eliminar la necesidad de emitir tickets fisicos. De este modo, se reducen significativamente
el consumo de papel, agua, energia y las emisiones de CO:. asociadas a la produccion de
papel térmico. La aplicacion no solo digitaliza el proceso de compra, sino que ademas
promueve activamente la conciencia ambiental entre sus usuarios: con cada compra,
informa sobre el ahorro de recursos generado, generando asi un efecto educativo y de
sensibilizacién sobre el impacto positivo que tiene adoptar habitos mas sostenibles en la
vida diaria.

Por todas estas razones, el proyecto "Cantina UCC" representa una solucion concreta y
aplicada de Responsabilidad Social Universitaria, en tanto articula tecnologia, servicio y
valores institucionales en un mismo desarrollo. Si bien su alcance es limitado al entorno
inmediato del campus, logra integrar de manera equilibrada dimensiones sociales,
organizacionales, educativas y ambientales. No se trata solamente de una solucién técnica
a un problema cotidiano, sino de una propuesta que busca generar valor para la comunidad
universitaria, contribuyendo a una mejor calidad de vida, a una cultura de solidaridad y a
practicas mas sostenibles, en coherencia con el compromiso formativo y transformador que
la UCC promueve desde su modelo institucional.

En las secciones dedicadas al impacto social y al impacto ambiental, se profundizara con
mayor detalle en las implicancias concretas que este proyecto tiene en cada uno de estos
ambitos.

68

IMPACTO SOCIAL

Beneficio o Impacto Positivo General

Cantina UCC representa una mejora en la calidad de vida de la comunidad universitaria. Al
optimizar el proceso de compra y pago de alimentos en la cantina, la aplicacion reducira los
tiempos de espera, mejorara la experiencia del usuario y permitird un uso mas eficiente del
tiempo, especialmente en contextos de recreos breves. Esto contribuira a un entorno
académico mas saludable, ordenado y accesible, donde los estudiantes, docentes y
personal administrativo puedan disfrutar de sus tiempos de descanso con mayor efectividad
y tranquilidad.

Segmentos de la Poblacion Beneficiados

El principal grupo beneficiado por esta solucion seran los estudiantes universitarios, quienes
muchas veces disponen de recreos muy cortos para almorzar. También se veran
favorecidos los docentes y el personal administrativo, que podran evitar largas filas y
acceder a un servicio mas eficiente. Asimismo, el equipo de administracién de la cantina se
beneficia al contar con herramientas que optimizaran la operacion diaria, reduciran la carga
de trabajo en horas pico y permitiran prever la demanda.

Inclusién y Reduccién de Brechas

Cantina UCC promueve la inclusion digital al acercar herramientas tecnoldgicas a un
servicio tradicional. Este enfoque permite reducir la brecha entre quienes estan
acostumbrados a sistemas digitales y quienes no, ya que la plataforma ha sido pensada
para ser intuitiva y accesible para todo tipo de usuarios y teléfonos moviles,
independientemente de su familiaridad con la tecnologia. Ademas, al ofrecer opciones de
compra anticipada y digital, se garantiza mayor equidad en el acceso al servicio, sin
importar la disponibilidad horaria de cada estudiante.

69

IMPACTO MEDIOAMBIENTAL

El proyecto Cantina UCC contribuye activamente a la sostenibilidad medioambiental
mediante distintas acciones enfocadas en reducir residuos, optimizar recursos y operar
sobre una infraestructura mas limpia:

Eliminacién de tickets impresos

La digitalizacion total del sistema de compra elimina la necesidad de emitir tickets fisicos.
Esto representa un ahorro directo de recursos cada vez que un ticket no es impreso.

Ahorro por 1 ticket no impreso:

Papel: 0.2 gramos - Un ticket promedio de 10—-12 cm pesa entre 0.15 y 0.2 gramos,
segun el gramaje del papel térmico (48-55 g/m?3).

Madera cruda evitada: 0.4 a 0.48 gramos - Segun diversas fuentes, para fabricar una
tonelada de papel virgen se requieren aproximadamente entre 2.400 y 2.700
kilogramos de madera, lo que equivale a unos 17 arboles adultos. Dado que un
ticket promedio pesa alrededor de 0,2 gramos, al evitar la impresion de un solo ticket
se ahorran aproximadamente 0,4 a 0,48 gramos de madera cruda.

Agua utilizada para producir el papel: 25 a 50 ml - La produccién de papel consume
entre 125 y 250 litros de agua por kilogramo de papel. Calculo: 0.0002 kg de papel x
125-250 L/kg = 0.025-0.05 L = 25-50 ml

Energia utilizada en produccion e impresion: ~0.0018 kWh - La fabricacién de papel
consume entre 6 y 12 kWh por kilogramo. Calculo: 0.0002 kg de papel x 9 kWh/kg
(considerando produccion y procesamiento) = 0.0018 kWh

Emisiones de CO:: ~2 gramos - La produccion de papel genera entre 0.7 y 1.2 kg de
CO: por kilogramo de papel. Célculo: 0.0002 kg de papel x 10 kg CO./kg = 0.002 kg
=2 g

Ahorro acumulado por 1000 tickets no impresos:

Papel: 200 gramos
Madera cruda evitada: 400 a 480 gramos
Agua utilizada para producir el papel: 25 a 50 Litros

Energia utilizada en produccion e impresién: 1,8 kWh

Emisiones de CO:: ~2 kg

Dato clave extra: El papel térmico usado en tickets no es reciclable y suele terminar como
residuo no recuperable, aumentando el impacto ambiental a largo plazo.

¢ Qué se puede hacer con 1 kWh?

70

Dispositivos personales:

e Cargar un celular hasta 75 veces

e Usar una notebook durante 20 a 25 horas

e Escuchar musica con auriculares bluetooth por mas de 300 horas
Cocina y hogar:

e Hervir 10 litros de agua en una pava eléctrica

e Tostar pan durante 1 hora continua

e Usar una cocina eléctrica de 1000 W durante 1 hora

e Lavar una carga de ropa en frio (lavarropas eficiente)
Electrodomésticos:

e Hacer funcionar una heladera eficiente por casi 1 dia

e Encender una lampara LED de 10W durante 100 horas

e Alimentar una TV LED de 100W por unas 10 horas
Transporte eléctrico:

e Recargar una bicicleta eléctrica completamente una vez

e Recorrer 6 a 8 km con un auto eléctrico (promedio de 15 kWh/100 km)
Concientizacion sobre la eliminacién de tickets impresos

La app no solo digitaliza la experiencia de compra, sino que también informa a los usuarios
sobre el impacto positivo de evitar los tickets fisicos. Con cada compra realizada, te
mostramos cuantos recursos estas ayudando a ahorrar (papel, agua, energia y emisiones) y
te recordamos que cada pequefio gesto suma en el cuidado del planeta. Elegir no imprimir
un ticket es elegir un futuro mas sustentable.

Reduccion del desperdicio alimentario

La funcionalidad de Planes de Comida y Compra anticipada, permite a los usuarios
reservar sus comidas con antelacion. Esto habilitard a la cantina a planificar mejor la
cantidad de alimentos a preparar cada dia, disminuyendo el excedente y el desperdicio de
comida.

Infraestructura sustentable

Actualmente, la aplicacion esta alojada en Google Cloud, una plataforma que opera con
energia 100% renovable en todos sus centros de datos. Esto significa que la operacion del
backend (incluyendo la base de datos y API) tiene una huella de carbono practicamente

71

nula, alineandose con las practicas mas sostenibles del sector. Anexo 5

72

BENEFICIOS POST
IMPLEMENTACION

Una vez implementado el sistema Cantina UCC, se espera obtener una serie de beneficios
tangibles e intangibles que impactaran positivamente tanto en la administracion de la
cantina como en la comunidad universitaria.

Beneficios Tangibles (Operativos y Financieros):

Aumento de la Eficiencia Operativa: El beneficio mas significativo sera la
optimizacion de la operatividad de la cantina, especialmente durante las horas pico.
Al digitalizar y desacoplar el proceso de pago del proceso de retiro, se elimina el
principal cuello de botella identificado: la congestion en la caja. Esto permitira
procesar un mayor volumen de pedidos en menos tiempo.

Reduccion del Desperdicio Alimentario: La implementacién de pedidos
anticipados y planes de comida proporcionara a la administracién herramientas para
prever la demanda diaria. Esto permitird a la cocina planificar de manera mas
precisa la cantidad de alimentos a preparar , reduciendo el excedente y el
desperdicio.

Automatizacion de Tareas Administrativas: El sistema generara automaticamente
resumenes de compras diarias y mensuales. Esto elimina la necesidad de realizar
cierres de caja y registros manuales, reduciendo la carga de trabajo administrativo y
minimizando errores.

Recuperacion de Ventas Perdidas: Se espera un incremento en las ventas al
recapturar a los clientes (estudiantes y docentes) que anteriormente decidian no
comprar debido a las largas filas.

Fidelizacion de Clientes: La gestion digital de "Planes de Comida" fomenta la
compra anticipada con descuento , asegurando un flujo de ingresos recurrentes y
fomentando la lealtad de los usuarios.

Beneficios Intangibles (Experiencia y Estrategia):

Mejora en la Calidad de Vida del Campus: Se reduciran drasticamente los tiempos
de espera , mejorando la experiencia general de estudiantes y docentes. Esto
permite un uso mas eficiente del tiempo de descanso , reduciendo la frustracién y la
desmotivacion asociadas a las filas.

Mejora en la Toma de Decisiones: Los administradores tendran acceso a datos
consolidados sobre ventas y productos. Esta informacién facilitara la toma de
decisiones estratégicas sobre el catdlogo de productos y la planificacion de la
demanda.

Modernizacién del Servicio: La implementacion de una plataforma digital alinea el
servicio de la cantina con las expectativas modernas de los usuarios, promoviendo la
inclusion digital y mejorando la imagen general del servicio.

73

CONCLUSION

El desarrollo del proyecto ha representado una valiosa y exhaustiva instancia de
aprendizaje integral, permitiéndome no solo abordar, sino también navegar con éxito el ciclo
completo de vida de una aplicacion web moderna, desde su concepcion y disefo
estratégico hasta su despliegue final en una infraestructura de nube. La experiencia me ha
permitido adquirir y consolidar conocimientos practicos fundamentales en la orquestacion de
un desarrollo complejo, abarcando de manera integrada tanto el frontend, con sus desafios
de usabilidad y experiencia de usuario, como el backend y la robusta infraestructura en la
nube que lo soporta.

Durante el proceso, una de las reflexiones recurrentes fue la posibilidad de haber construido
una aplicacion mévil nativa. Si bien la familiaridad con tecnologias como React Native
habria hecho esta alternativa aun mas tentadora, el analisis profundo del contexto de uso
me llevé a la conclusion de que la simplicidad y la accesibilidad de una app web son sus
mayores fortalezas en este caso. La decisién de optar por un sistema facilmente accesible
mediante un cddigo QR fue una eleccion estratégica para minimizar la barrera de entrada,
evitando forzar a estudiantes o docentes a buscar, descargar e instalar una aplicacion que
podrian utilizar de forma esporadica.

Uno de los aprendizajes técnicos mas significativos fue, sin duda, la implementacion de una
arquitectura desplegada en Google Cloud Platform. Esta fase del proyecto me brind6 una
experiencia practica invaluable en la configuracién y gestion de servicios clave como Cloud
Run para el despliegue escalable de la APl y Firestore como base de datos NoSQL en
tiempo real. La eleccién de esta plataforma, motivada por su escalabilidad y su generosa
capa gratuita, demostrd ser una decision acertada que garantiza la viabilidad econémica del
proyecto a largo plazo.

El proyecto se concibié y ejecutd bajo una metodologia agil, guiada estrictamente por
historias de usuario, lo que facilitd un progreso iterativo e incremental. Si bien no se elabord
un diagrama de Gantt formal, este enfoque asegur6é que cada funcionalidad desarrollada
aportara un valor directo al usuario final, proporcionando un marco de trabajo flexible pero
estructurado que dio un orden y una direccion clara a la implementacién.

Aunque al momento de redactar este informe el sistema esta completamente operativo,
reconozco que el area de testing formal (pruebas unitarias y de integraciéon) no fue un foco
principal. Soy plenamente consciente de que, en un entorno de desarrollo profesional, esta
es un area crucial para garantizar que el valor entregado sea robusto, confiable y
mantenible a futuro.

En retrospectiva, considero que los objetivos planteados al inicio del proyecto fueron
cumplidos satisfactoriamente. Se ha logrado una solucion funcional y completa que no solo
resuelve la problematica identificada de las largas filas en la cantina, sino que también se
alinea con los principios de Responsabilidad Social Universitaria al mejorar la calidad de
vida en el campus, promover la inclusion digital y generar un impacto medioambiental
positivo. Este proyecto ha sido mucho mas que un ejercicio técnico; me ha preparado para
enfrentar proyectos tecnoldgicos reales con una vision mas completa, estratégica e integral,
entendiendo que la tecnologia es una herramienta poderosa para generar valor y mejorar el
entorno que nos rodea.

74

Préoximos Pasos

Aunque el sistema actual es completamente funcional, el ciclo de vida de un producto de
software nunca termina. Para asegurar su éxito y sostenibilidad a largo plazo, los siguientes
pasos son fundamentales:

1.

Reforzar la Seguridad General: Si bien se han implementado practicas de
seguridad estandar, como la gestion de secretos en GCP, un préximo paso crucial es
realizar una auditoria de seguridad exhaustiva. Esto implicaria reforzar la seguridad
de los endpoints de la API para prevenir vulnerabilidades comunes y asegurar la
protecciéon integral de los datos de los usuarios. Actualmente, Firebase
Authentication se utiliza unicamente para vincular direcciones de correo electrénico
con cuentas de usuario y asi permitir guardar el historial de 6rdenes compradas.
Como mejora futura, se propone que el backend requiera y valide tokens de
Firebase en los endpoints mas sensibles (por ejemplo, los relacionados con
pagos, administracion o modificaciones de datos criticos). Esto permitira garantizar
que solo usuarios autenticados puedan acceder a operaciones clave, elevando
significativamente el nivel de seguridad general del sistema.

Implementar Pruebas Automatizadas: Para garantizar la robustez y facilitar el
mantenimiento futuro, es prioritario desarrollar un conjunto completo de pruebas
unitarias y de integracion. Estas pruebas deben integrarse en el flujo de trabajo de
CI/CD con herramientas como GitHub Actions, asegurando que cada nuevo cambio
sea verificado automaticamente antes del despliegue y evitando regresiones en el
cédigo existente.

Puesta en Produccién y Validaciéon Real: El lanzamiento de la aplicacion implica
un proceso multifacético que va mas alla del simple despliegue técnico. Este
proceso incluye:

e Validacion del Producto: Permitir que los estudiantes y docentes utilicen la
aplicacion en su dia a dia. Esta etapa es crucial para obtener feedback
directo y validar si la solucion realmente cumple con sus expectativas y
resuelve el problema de manera efectiva.

e Onboarding de la Cantina: Realizar una capacitacién con el personal
administrativo de la cantina para asegurar que puedan utilizar la interfaz de
administracién de forma auténoma vy eficiente (gestion de productos,
visualizacién de 6rdenes, etc.). Este proceso de "onboarding" estaria sujeto a
posibles modificaciones y mejoras, adaptando la herramienta a su flujo de
trabajo real basandose en la retroalimentacion de su experiencia de usuario
(UX).

e Ciclo de Mejora Continua: Utilizar los datos y comentarios recopilados
durante la puesta en produccion para iterar sobre el producto, corrigiendo
errores, mejorando funcionalidades existentes y planificando futuras
caracteristicas.

4. Optimizacion de Consumos e Imagenes en la Infraestructura: Un siguiente paso

clave sera optimizar el uso de los recursos de infraestructura, especialmente los
relacionados con la carga y entrega de imagenes en la aplicacion web. Estas
mejoras no solo disminuiran el consumo de ancho de banda y almacenamiento en

75

5.

GCP, sino que también permitiran que Vercel aproveche su caché interna, evitando
solicitudes repetidas de imagenes que no cambian frecuentemente, mejorando asi la
velocidad y eficiencia general del sistema.Para ello, se propone:

e Optimizaciéon de imagenes: Al subir nuevas imagenes desde el frontend
convertirlas a formato WebP desde el backend antenas de subirlas al bucket,
para reducir el peso de los archivos sin comprometer la calidad visual.

e Mejorar la Configuracién de Google Cloud Storage (GCS):

m Establecer en el bucket de GCP encabezados de cacheo prolongado
para imagenes inmutables

Cache-Control: , immutable

m Implementar un sistema de versionado en los nombres de archivos
para garantizar que los navegadores actualicen solo las imagenes
modificadas.

m Automatizar la eliminacion de versiones antiguas al subir una nueva
imagen, evitando almacenamiento innecesario y reduciendo costos.

Implementar un Médulo de Reclamos y Reembolsos: Desarrollar una nueva
seccion que permita a los usuarios (estudiantes y docentes, segun lo solicitado en la
encuesta) generar reclamos. Esto incluye la capacidad de realizar reclamos
genéricos o vincular un reclamo a un order_id especifico. El médulo podria contar
con:

e Una interfaz de administracion para que el personal de la cantina pueda
visualizar y gestionar todos los reclamos entrantes.

e Funcionalidad de reembolsos: "Como administrador de la cantina quiero
poder realizar reembolsos a través de la api de mercadopago, para poder
reembolsar una compra por este medio si llegara a pasar algun
inconveniente".

Desarrollar un Médulo de Analiticas Avanzadas: Crear un nuevo médulo de
reportes: "Como administrador del sistema, quiero poder generar reportes de ventas
y popularidad de productos, para entender mejor qué productos son los mas
vendidos y planificar futuras promociones o inventarios". Se evaluara la integracion
de herramientas de IA para potenciar estas analiticas.

Integrar Funcionalidad de WhatsApp Business: Incorporar la APl de WhatsApp
para mejorar la accesibilidad y permitir nuevos flujos de usuario:

e Permitir a usuarios registrados iniciar sesion con su numero de teléfono.

e Habilitar compras para usuarios no registrados: El flujo permitiria confirmar el
carrito, enviar el link de pago de Mercado Pago y recibir el resumen de la
compra final a través de WhatsApp. El usuario podria retirar el pedido
presentando el chat, sin necesidad de crear una cuenta.

76

8.

Implementar un Sistema de Puntos: Disefiar e implementar un sistema de
fidelizacion basado en puntos, cuya viabilidad y reglas de negocio deberan validarse
con la administracion de la cantina.

77

ANEXOS

1. Entrevista con la Administracion de la Cantina

2. Encuesta a usuarios de la cantina - Para acceder debera pedir acceso - También
se puede ver el excel con las respuestas donde se pueden aplicar distintos filtros y
ver los graficos con los filtros aplicados

3. Caso Gallina Blanca
4. Caso PIA

5. Google Datacenters

78

https://docs.google.com/document/u/0/d/1yiRd_Kh5DvCYjkbeiY31NPEBzmgXh4Oh4PvMGbb4V94/edit
https://docs.google.com/forms/d/1GkJ3jxVrtnKCTtnvyaqSJTLF-Z-qQEAsM4FJoNu7WOg/edit#responses
https://docs.google.com/spreadsheets/d/1FDuN_pub_tOp6_PKlDBePhvVgNXZ2htAe_JlJlftmmc/edit?gid=4665859#gid=4665859
https://es.slideshare.net/slideshow/caso-de-xito-gallina-blanca-automatiza-sus-pedidos-y-cargos-de-clientes/65501206?utm_source=chatgpt.com
https://2brains.lat/casos/pia-transformando-la-gestion-de-pedidos-en-icb-food-service/?utm_source=chatgpt.com
https://datacenters.google/operating-sustainably/

BIBLIOGRAFIA

10.

11.

12.

13.

14.

15.

16.

17.

Chat GPT por consultas y estructuracion del texto

Google Cloud Run Pricing Savings Guide - Pump,
https://www.pump.co/blog/google-cloud-run-pricin

Firestore pricing - Google Cloud, https://cloud.google.com/firestore/pricing

Understand Cloud Firestore billing | Firebase
https://firebase.google.com/docs/firestore/pricing

GCP Storage Pricing - Cost Guide & Savings Strategies - Pump
https://www.pump.co/blog/gcp-storage-pricing

Google Cloud Storage Pricing: Get the Best Bang for Your Buckets - NetApp BlueXP,
https://bluexp.netapp.com/blog/gcp-cvo-blg-google-cloud-storage-pricing-get-the-best-

bang-for-your-buckets

Cloud Run | Google Cloud https://cloud.google.com/run#pricing

Pricing | Cloud Run | Google Cloud https://cloud.google.com/run/pricing/

How much memory does a spring boot rest api usually consume? : r/SpringBoot -
Reddit
https://www.reddit.com/r/SpringBoot/comments/15gy5jy/how_much memory does a

spring_boot_rest_api/

Memory management and garbage collection (GC) in ASP.NET Core - Learn Microsoft

https://learn.microsoft.com/en-us/aspnet/core/performance/memory?view=aspnetcore-
9.0

Pricing | Cloud Storage | Google Cloud https://cloud.google.com/storage/pricing

Free cloud features and trial offer | Google Cloud Free Program
https://cloud.google.com/free/docs/free-cloud-features

Free Trial and Free Tier Services and Products - Google Cloud
https://cloud.google.com/free

Google Cloud CDN Pricing & Savings Guide - Pump
https://www.pump.co/blog/google-cloud-cdn-pricing

Fuentes sobre el papel: fundacioncanal.com - Mama Coca - adoc Studio

Parrot Software. (n.d.). Pros y contras de las aplicaciones de delivery para
restaurantes. Recuperado de

https://parrotsoftware.com.mx/blog/pros-y-contras-de-las-aplicaciones-de-delivery-par
a-restaurantes

Ticksy. (n.d.). Ventajas y desventajas del servicio delivery. Recuperado de
https://ticksy.app/blog/ventajas-y-desventajas-del-servicio-delivery/

79

https://www.pump.co/blog/google-cloud-run-pricing
https://cloud.google.com/firestore/pricing
https://firebase.google.com/docs/firestore/pricing
https://www.pump.co/blog/gcp-storage-pricing
https://bluexp.netapp.com/blog/gcp-cvo-blg-google-cloud-storage-pricing-get-the-best-bang-for-your-buckets
https://bluexp.netapp.com/blog/gcp-cvo-blg-google-cloud-storage-pricing-get-the-best-bang-for-your-buckets
https://cloud.google.com/run#pricing
https://cloud.google.com/run/pricing/
https://www.reddit.com/r/SpringBoot/comments/15gy5jy/how_much_memory_does_a_spring_boot_rest_api/
https://www.reddit.com/r/SpringBoot/comments/15gy5jy/how_much_memory_does_a_spring_boot_rest_api/
https://learn.microsoft.com/en-us/aspnet/core/performance/memory?view=aspnetcore-9.0
https://learn.microsoft.com/en-us/aspnet/core/performance/memory?view=aspnetcore-9.0
https://cloud.google.com/storage/pricing
https://cloud.google.com/free/docs/free-cloud-features
https://cloud.google.com/free
https://www.pump.co/blog/google-cloud-cdn-pricing
https://www.fundacioncanal.com/canaleduca/wp-content/uploads/2015/08/Cuestinario-consumo-indirecto-de-Papel.pdf?utm_source=chatgpt.com
https://www.mamacoca.org/El_Papel_de_la_coca_June_2008/_es/Dossier_El_Papel/VII-Lista_tentativa_para_estimar_costos_produccion_a_escala.htm?utm_source=chatgpt.com
https://www.adoc-studio.app/blog/co2-calculation-paper-manuals?utm_source=chatgpt.com
https://parrotsoftware.com.mx/blog/pros-y-contras-de-las-aplicaciones-de-delivery-para-restaurantes
https://parrotsoftware.com.mx/blog/pros-y-contras-de-las-aplicaciones-de-delivery-para-restaurantes
https://parrotsoftware.com.mx/blog/pros-y-contras-de-las-aplicaciones-de-delivery-para-restaurantes
https://ticksy.app/blog/ventajas-y-desventajas-del-servicio-delivery/
https://ticksy.app/blog/ventajas-y-desventajas-del-servicio-delivery/

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

ClickUp. (n.d.). Los 10 mejores programas de gestion alimentaria. Recuperado de
https://clickup.com/es-ES/blog/436583/software-de-gestion-alimentaria

Vev. (n.d.). Los mejores software de entrega de comida a domicilio. Recuperado de
https://vev.co/es/blog/los-mejores-software-de-entrega-de-comida-a-domicilio

Catalogo de Software. (n.d.). Software para restaurantes. Recuperado de

https://www.catalogodesoftware.com/software/software-hospitales-pos-servicios-turis
mo-restaurantes/software-hoteles-bares-restaurantes-bogota-colombia/sistema-restau

rantes-bogota-colombia-tns

Square. (n.d.). Software de Square KDS sin costo adicional. Recuperado de
https://squareup.com/us/es/point-of-sale/restaurants

Aplyca. (n.d.). Next.js: El futuro web. Recuperado de
https://www.aplyca.com/blog/nextjs-el-futuro-web-que-es-nextjs

10code. (n.d.). ¢ Qué Es Next.js y Cual Es Su Propésito? Recuperado de
https://10code.es/nextjs-que-es/

Solbyte. (n.d.). React JS: Ventajas e inconvenientes. Recuperado de
https://www.solbyte.com/blog/react-js-ventajas-e-inconvenientes/

Serverspace. (n.d.). React.js: ventajas, desventajas y casos de uso. Recuperado de
https://serverspace.io/es/about/blog/review-of-the-react-js-framework-advantages-disa

dvantages-and-use-cases/

The Codest. (n.d.). Pros y contras de Vue.js. Recuperado de
https://thecodest.co/es/blog/pros-y-contras-de-vue/

Rootstack. (n.d.). VuedS: Ventajas y desventajas de este framework. Recuperado de
https://rootstack.com/es/blog/vuejs-ventajas-desventajas

Discrat. (n.d.). Ventajas y Desventajas del responsive design. Recuperado de
https://www.discrat.com.ar/ventajas-y-desventajas-del-diseno-adaptativo/

ESIC. (n.d.). Angular: Qué es, para qué sirve y ventajas. Recuperado de
https://www.esic.edu/rethink/tecnologia/angular-que-es-para-que-sirve-y-ventajas-c

FastAPI. (n.d.). Caracteristicas. Recuperado de https://fastapi.tiangolo.com/es/

IronPDF. (n.d.). FastAPI Python. Recuperado de
https://ironpdf.com/es/python/blog/compare-to-other-components/fastapi-python/

Scribd. (n.d.). Django Rest Framework. Recuperado de
https://es.scribd.com/document/538658165/Django-Rest-Framework

Django REST Framework. (n.d.). API Guide: Views. Recuperado de
https://www.django-rest-framework.org/api-quide/views/

Apuntes.de. (n.d.). Desarrollo de una API REST con Flask en Python. Recuperado de

una-interfaz-de-programacion-de-aplicaciones-restful/

80

https://clickup.com/es-ES/blog/436583/software-de-gestion-alimentaria
https://clickup.com/es-ES/blog/436583/software-de-gestion-alimentaria
https://vev.co/es/blog/los-mejores-software-de-entrega-de-comida-a-domicilio
https://vev.co/es/blog/los-mejores-software-de-entrega-de-comida-a-domicilio
https://www.catalogodesoftware.com/software/software-hospitales-pos-servicios-turismo-restaurantes/software-hoteles-bares-restaurantes-bogota-colombia/sistema-restaurantes-bogota-colombia-tns
https://www.catalogodesoftware.com/software/software-hospitales-pos-servicios-turismo-restaurantes/software-hoteles-bares-restaurantes-bogota-colombia/sistema-restaurantes-bogota-colombia-tns
https://www.catalogodesoftware.com/software/software-hospitales-pos-servicios-turismo-restaurantes/software-hoteles-bares-restaurantes-bogota-colombia/sistema-restaurantes-bogota-colombia-tns
https://www.catalogodesoftware.com/software/software-hospitales-pos-servicios-turismo-restaurantes/software-hoteles-bares-restaurantes-bogota-colombia/sistema-restaurantes-bogota-colombia-tns
https://squareup.com/us/es/point-of-sale/restaurants
https://squareup.com/us/es/point-of-sale/restaurants
https://www.aplyca.com/blog/nextjs-el-futuro-web-que-es-nextjs
https://www.aplyca.com/blog/nextjs-el-futuro-web-que-es-nextjs
https://10code.es/nextjs-que-es/
https://10code.es/nextjs-que-es/
https://www.solbyte.com/blog/react-js-ventajas-e-inconvenientes/
https://www.solbyte.com/blog/react-js-ventajas-e-inconvenientes/
https://serverspace.io/es/about/blog/review-of-the-react-js-framework-advantages-disadvantages-and-use-cases/
https://serverspace.io/es/about/blog/review-of-the-react-js-framework-advantages-disadvantages-and-use-cases/
https://serverspace.io/es/about/blog/review-of-the-react-js-framework-advantages-disadvantages-and-use-cases/
https://thecodest.co/es/blog/pros-y-contras-de-vue/
https://thecodest.co/es/blog/pros-y-contras-de-vue/
https://rootstack.com/es/blog/vuejs-ventajas-desventajas
https://rootstack.com/es/blog/vuejs-ventajas-desventajas
https://www.discrat.com.ar/ventajas-y-desventajas-del-diseno-adaptativo/
https://www.discrat.com.ar/ventajas-y-desventajas-del-diseno-adaptativo/
https://www.esic.edu/rethink/tecnologia/angular-que-es-para-que-sirve-y-ventajas-c
https://www.esic.edu/rethink/tecnologia/angular-que-es-para-que-sirve-y-ventajas-c
https://fastapi.tiangolo.com/es/
https://ironpdf.com/es/python/blog/compare-to-other-components/fastapi-python/
https://ironpdf.com/es/python/blog/compare-to-other-components/fastapi-python/
https://es.scribd.com/document/538658165/Django-Rest-Framework
https://es.scribd.com/document/538658165/Django-Rest-Framework
https://www.django-rest-framework.org/api-guide/views/
https://www.django-rest-framework.org/api-guide/views/
https://apuntes.de/python/desarrollo-de-una-api-rest-con-flask-en-python-creacion-de-una-interfaz-de-programacion-de-aplicaciones-restful/
https://apuntes.de/python/desarrollo-de-una-api-rest-con-flask-en-python-creacion-de-una-interfaz-de-programacion-de-aplicaciones-restful/
https://apuntes.de/python/desarrollo-de-una-api-rest-con-flask-en-python-creacion-de-una-interfaz-de-programacion-de-aplicaciones-restful/

35.

36.

37.

38.

39.

40.

41.

42.

Certidevs. (n.d.). Tutorial Flask APl REST GET. Recuperado de
https://certidevs.com/tutorial-flask-api-rest-get

Hostinger. (n.d.). ¢ Qué es Node.js? Recuperado de
https://www.hostinger.com/es/tutoriales/que-es-node-js

Startechup. (n.d.). Node.js vs Express.js: Caracteristicas y Ventajas. Recuperado de
https://www.startechup.com/es/blog/tospanish/

Geekflare. (n.d.). AWS vs. Azure vs. Google Cloud. Recuperado de
https://geekflare.com/es/aws-vs-azure-vs-google-cloud/

Docker. (n.d.). Docker Hub. Recuperado de
https://www.docker.com/products/docker-hub/

Palo Alto Networks. (n.d.). ¢ Qué es el ciclo de CI/CD? Recuperado de
https://www.paloaltonetworks.es/cyberpedia/what-is-the-ci-cd-pipeline-and-ci-cd-securi

ty

GitHub. (n.d.). What is CI/CD? Recuperado de
https://github.com/resources/articles/devops/ci-cd

GitHub. (n.d.). Getting started with GitHub Actions. Recuperado de
https://docs.github.com/articles/getting-started-with-github-actions

81

https://certidevs.com/tutorial-flask-api-rest-get
https://certidevs.com/tutorial-flask-api-rest-get
https://www.hostinger.com/es/tutoriales/que-es-node-js
https://www.hostinger.com/es/tutoriales/que-es-node-js
https://www.startechup.com/es/blog/tospanish/
https://www.startechup.com/es/blog/tospanish/
https://geekflare.com/es/aws-vs-azure-vs-google-cloud/
https://geekflare.com/es/aws-vs-azure-vs-google-cloud/
https://www.docker.com/products/docker-hub/
https://www.docker.com/products/docker-hub/
https://www.paloaltonetworks.es/cyberpedia/what-is-the-ci-cd-pipeline-and-ci-cd-security
https://www.paloaltonetworks.es/cyberpedia/what-is-the-ci-cd-pipeline-and-ci-cd-security
https://www.paloaltonetworks.es/cyberpedia/what-is-the-ci-cd-pipeline-and-ci-cd-security
https://github.com/resources/articles/devops/ci-cd
https://github.com/resources/articles/devops/ci-cd
https://docs.github.com/articles/getting-started-with-github-actions
https://docs.github.com/articles/getting-started-with-github-actions

	
	ÍNDICE
	
	
	RESUMEN - ABSTRACT
	Español
	English

	PRESENTACIÓN DEL TEMA
	GLOSARIO
	DIAGNÓSTICO (PROBLEMÁTICA)
	Estado del Arte
	Impacto
	Para los estudiantes y docentes:
	Para la administración de la cantina:

	OBJETIVOS
	Objetivo Global
	Objetivos Específicos

	MARCO TEÓRICO
	1. Contexto General del Problema
	2. Análisis de Campo
	2.1. Perspectiva de la Administración: La Entrevista Clave
	2.2. Percepción de los Usuarios: Encuesta de Validación
	2.3. Conclusión del Análisis

	3. Opciones Similares en el Mercado
	El Vacío que Cantina UCC Busca Llenar:

	4. Tecnologías Investigadas
	Frontend | UI
	Next.js:
	React.js:
	Vue.js:
	Angular:

	Backend
	FastAPI:
	Django:
	Flask:
	Node.js (Express.js):
	Go (Gin Gonic):

	
	Despliegue y Servicios en la Nube:
	AWS (Amazon Web Services):
	Google Cloud Platform (GCP):
	Microsoft Azure:

	Herramientas de Integración y Despliegue Continuo (CI/CD)
	Jenkins
	GitHub Actions
	GitLab CI/CD

	Plataformas de Pago en el Ecosistema Argentino (Opciones para integrar pagos online)
	Criterios de Evaluación

	
	Infraestructura para la Comunicación Transaccional por Correo Electrónico
	Impacto en la Operativa

	Estrategias de Pruebas del Sistema
	Pruebas Unitarias
	Pruebas de Integración
	Pruebas de Aceptación de Usuario (UAT)
	Pruebas Funcionales

	
	PROPUESTA DE SOLUCIÓN
	1 Alcance Funcional
	Historias de usuario:
	Usuarios Invitados (sin cuenta)
	Usuario Registrado (extiende usuario invitado)
	Administradores de la cantina:

	Lo que está incluido en el Alcance Funcional:
	Lo que queda fuera del Alcance Funcional:

	2 Diseño
	Pantallas
	En el frontend de la cantina (para clientes)
	En el frontend de administración (para los administradores de la cantina)

	Diagramas
	Tecnologías elegidas
	Frontend: Next.js
	Backend: FastAPI con Python
	Despliegue y Servicios en la Nube: Google Cloud Platform (GCP)
	Integración y Despliegue Continuo: GitHub Actions y Docker Hub
	Plataforma de pagos

	Arquitectura
	1. Arquitectura General
	2. Componentes Principales de la Arquitectura en detalle
	3. Diagrama de la Arquitectura
	4. Modelo de Comunicación
	5. Consideraciones de Escalabilidad y Seguridad

	3 Implementación
	Despliegue inicial
	Desarrollo basado en historias de usuario

	4 Pruebas
	Casos de Prueba Funcionales:
	Aclaración sobre el Entorno de Pruebas
	Otras aclaraciones

	
	IMPACTO ECONÓMICO
	1. Metodología y Supuestos Clave
	Escenarios Definidos:
	Pila de Infraestructura:
	Estimación de uso por compra
	Consumo GCP por Compra:
	Uso de Vercel (frontend):
	Firebase Authentication
	Comisiones de Mercado Pago
	Consumo amazon SES por Compra

	2. Análisis de Costos Estimados por Componente
	Costos de GCP (us-central1)
	Escenario de Consumo Bajo (3k Compras/Mes)
	Escenario de Consumo Medio (30k Compras/Mes)
	Escenario de Consumo Alto (150k Compras/Mes)
	Corrección del 3er escenario

	Costos de Vercel
	Costos de Mercadopago
	Costos de Amazon SES
	 Emails por compra

	4. Análisis Costo-Beneficio Conciso
	5. Para tener en cuenta
	6. Resumen de Resultados y Conclusión Final

	
	RSU
	IMPACTO SOCIAL
	Beneficio o Impacto Positivo General
	Segmentos de la Población Beneficiados
	Inclusión y Reducción de Brechas

	IMPACTO MEDIOAMBIENTAL
	Eliminación de tickets impresos
	Concientización sobre la eliminación de tickets impresos
	Reducción del desperdicio alimentario
	Infraestructura sustentable

	BENEFICIOS POST IMPLEMENTACIÓN
	Beneficios Tangibles (Operativos y Financieros):
	Beneficios Intangibles (Experiencia y Estrategia):

	CONCLUSIÓN
	Próximos Pasos

	
	ANEXOS
	1.​Entrevista con la Administración de la Cantina
	2.​Encuesta a usuarios de la cantina - Para acceder deberá pedir acceso - También se puede ver el excel con las respuestas donde se pueden aplicar distintos filtros y ver los gráficos con los filtros aplicados
	3.​Caso Gallina Blanca
	4.​Caso PIA
	5.​Google Datacenters

	BIBLIOGRAFÍA

