
Documento disponible para su consulta y descarga en Biblioteca Digital - Producción
Académica, repositorio institucional de la Universidad Católica de Córdoba, gestionado por el
Sistema de Bibliotecas de la UCC.

Cetti, Paolo

Lucero Ruiz, Máximo

Quesada, Santiago

SaveApp: revolucionando el
ahorro

Tesis para la obtención del título de
grado de Ingeniería de Sistemas

Director: Carreño, Ignacio Luciano

Esta obra está bajo una licencia de Creative Commons

Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial-Sin
Obra Derivada 4.0 Internacional.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Informe de Proyecto Final

Cetti Paolo Lucero Ruiz Máximo Quesada Santiago

2223989@ucc.edu.ar 2217924@ucc.edu.ar 2217882@ucc.edu.ar

Informe de Proyecto Final

ÍNDICE
ABSTRACT.. 6
PRESENTACIÓN DEL TEMA.. 9
GLOSARIO.. 10
DIAGNÓSTICO DEL PROBLEMA... 12

Contexto Actual.. 12
Problemas Identificados... 12
Oportunidades..13

OBJETIVOS... 13
Objetivo General.. 13
Objetivos Específicos... 14

MARCO TEÓRICO.. 15
Contexto General del Problema...15
Clasificación y características de las ofertas..15
Análisis de Campo... 16
Soluciones similares en el mercado...17
Tecnologías disponibles... 19

1. Mobile Backend..19
Comunicación entre Cliente y Servidor (APIs)... 19

REST (Representational State Transfer)..19
GraphQL...19

Autenticación y Gestión de Sesiones...20
JWT (JSON Web Tokens).. 20
Firebase Authentication..20
Supabase Auth... 21
Auth0.. 21
Better Auth..21

Otros...22
Mongoose...22
Typegoose.. 22
TypeGraphQL... 23

2. Mobile App... 23
Arquitecturas Móviles... 23

Progressive Web Apps (PWA)..23
Flutter... 24
React Native... 24
Kotlin Multiplatform (KMP)..25
Swift y el Ecosistema iOS...25
Kotlin y el Ecosistema Android... 26

Geolocalización y Notificaciones Contextuales..26
Geofencing... 26
Notificaciones Push.. 27

APIs Geoespaciales... 27

2

Informe de Proyecto Final

Google Maps Platform..27
Places API.. 28
Geocoding API... 28
OpenStreetMap (OSM)...28
Nominatim (Geocoding)..28
Overpass API (POIs).. 28

3. Dashboard y Landing... 28
Desarrollo Web...28

React.. 29
Shadcn... 29
Next.js (sobre React)..30
Astro... 30

Herramientas de Desarrollo y Build..30
Vite... 30
Django.. 31
FastAPI...31
Node.js... 32
Go (Golang)..32

4. Bases de Datos.. 32
PostgreSQL.. 33
MySQL / MariaDB...33
MongoDB..33
Firebase Firestore.. 34
Redis.. 34

5. ETL y Chatbot.. 34
Extracción de Datos y Automatización (Web Scraping)...34

BeautifulSoup... 35
Scrapy.. 35
Playwright (o Selenium)..35
Agentes de IA para Web Scraping (Emergente).. 36

Procesamiento de Lenguaje Natural (NLP) y Modelos de Lenguaje......................... 36
Expresiones Regulares.. 36
Modelos de Lenguaje (LLMs)... 37
Embeddings y Bases de Datos Vectoriales..37
MCP Servers.. 38

Técnicas de Prompting...38
Estructuración con Markdown.. 38
One-shot y Few-shot.. 38
Razonamiento (Chain-of-Thought)... 39
LLM as a Judge.. 39
Structured Output... 39
Plantillas de system prompt dinámicas.. 40
Tool / Function Calling.. 40
Selección semántica de contexto (RAG ligero).. 40

3

Informe de Proyecto Final

Calibración de decodificación...41
LLM Gateways... 41

Vercel AI Gateway.. 41
OpenRouter.. 41

Prompt Management Tools.. 42
PromptLayer... 42
Helicone..42
Langfuse...43

6. Cloud.. 43
Plataformas de Despliegue Cloud..43

Railway... 43
Vercel..43
Amazon Web Services (AWS)..44
Google Cloud Platform (GCP).. 44
Microsoft Azure...45
MongoDB Atlas...45

Terraform (Infrastructure as Code)... 46
Amazon S3 (Simple Storage Service).. 46
Google Cloud Storage.. 47

Contenerización y Orquestación.. 47
Contenerización (Docker)...47
Orquestación de Contenedores (Kubernetes)..47

7. CI/CD..48
GitHub Actions..48
GitLab CI/CD.. 48
Azure DevOps.. 48

PROPUESTA DE SOLUCIÓN..50
Introducción general...50
Alcance funcional... 50

Historias de Usuario... 50
Roles involucrados... 52

Diseño del sistema... 52
Arquitectura.. 52

Vista general...53
Multirepo y responsabilidades.. 54

SaveApp-Backend:...54
SaveApp-Crawlers..55
SaveApp-SaCrawl.. 56
SaveApp-Shared (Node.js package).. 57
SaveApp-Infrastructure...60
SaveApp-Dashboard.. 61
SaveApp-Chatbot... 62
SaveApp-Landing... 64
SaveApp-Flutterflow... 64

4

Informe de Proyecto Final

Pantallas principales [1]... 65
Pantallas secundarias [1]... 66

Implementación.. 67
Módulos del sistema...67

Tecnologías utilizadas y justificación..71
Planificación de pruebas.. 77

Alcance y componentes bajo prueba... 77
Entorno de pruebas..78
Supuestos y dependencias.. 78
Riesgos conocidos... 78
Criterios de aceptación...79
Cobertura por módulo y casos de prueba.. 79

● User...79
● PopUser.. 80
● Brand...80
● Category..81
● Bank.. 81
● Card...82
● Store..82
● Tracking...83

Matriz de cobertura frente a requisitos esperados... 84
Criterios de salida...85
Recomendaciones de pruebas adicionales..85
Prácticas operativas (sugeridas para el informe)... 85
Pruebas de carga y estrés... 86

Alcance...86
Metodología..86
Escenarios ejercitados... 86
Conclusiones.. 87

BENEFICIOS POST-IMPLEMENTACIÓN..88
Empoderamiento del usuario y educación financiera...88
Acceso unificado a la información..88
Aumento en la utilización de promociones existentes..88
Automatización de tareas repetitivas y tediosas.. 88
Mejora en la experiencia de usuario frente a apps tradicionales..................................... 89
Transparencia y trazabilidad de beneficios.. 89
Escalabilidad regional y replicabilidad del modelo...89
Valor estratégico para bancos y comercios..89
Base para funcionalidades futuras...89
Inclusión digital y democratización del ahorro..90

IMPACTOS...91
Impacto Económico..91

Ahorro directo para los usuarios...91
Mayor efectividad en campañas bancarias y comerciales................................... 91

5

Informe de Proyecto Final

Estímulo a la economía digital..91
Reducción de costos operativos...91

Impacto Social..91
Inclusión financiera y digital..91
Reducción de la asimetría de información... 92
Dimensión solidaria y comunitaria..92

Impacto Medioambiental.. 92
Disminución del uso de materiales impresos... 92
Optimización de desplazamientos..92
Promoción del consumo digital responsable.. 92

CONCLUSIONES.. 93
ANEXOS.. 94

Bibliografía y Fuentes Consultadas..94
Mockups iniciales (Figma)..96
Pantallas Principales.. 97
Pantallas Secundarias..98
Enfoque RSU... 99

6

Informe de Proyecto Final

ABSTRACT

El presente informe documenta el desarrollo e implementación de SaveApp, una aplicación
móvil inteligente orientada a mejorar el aprovechamiento de beneficios y promociones
asociadas a tarjetas de crédito y débito emitidas por bancos en Argentina. El proyecto surge
a partir de una problemática concreta: la fragmentación de la información sobre descuentos
bancarios, su redacción compleja y la escasa visibilidad para el usuario final. Esta situación
genera una pérdida sistemática de oportunidades de ahorro para millones de personas.

El objetivo principal es construir una solución automatizada, accesible y escalable que
permita a los usuarios registrar sus tarjetas sin ingresar datos sensibles, visualizar
descuentos disponibles, recibir notificaciones contextuales y contar con un asistente virtual
basado en inteligencia artificial. Para lograrlo, se integraron diversas prácticas y tecnologías
como web scraping, modelos de lenguaje natural (LLMs), geolocalización, notificaciones
push, Firebase Authentication y una arquitectura basada en GraphQL y MongoDB.

La metodología combinó diseño centrado en el usuario, desarrollo iterativo y modularidad
tecnológica. Se diseñaron interfaces intuitivas y se implementaron pruebas unitarias, de
integración y de carga para validar la robustez del sistema. El resultado es una plataforma
funcional que mejora la experiencia financiera cotidiana, empodera al usuario mediante
información clara y accionable, y promueve tanto la inclusión digital como la transparencia.

SaveApp no solo soluciona un problema práctico, sino que plantea un nuevo estándar en el
acceso a beneficios bancarios. Su arquitectura extensible y su enfoque centrado en el
usuario permiten proyectarla a nivel regional, con potencial de integración con actores del
ecosistema fintech y programas de fidelidad. Este trabajo representa una demostración
concreta del poder de la tecnología aplicada al bienestar financiero de las personas.

This report documents the development and implementation of SaveApp, an intelligent
mobile application designed to optimize the use of discounts and promotions linked to credit
and debit cards issued by banks in Argentina. The project originates from a clear problem:
the fragmentation of promotional information, its complex legal phrasing, and the low
visibility of benefits for end-users. This context leads to a systematic loss of saving
opportunities for millions of people.

The main objective is to build an automated, accessible, and scalable solution that allows
users to register their cards without sensitive data, view available promotions, receive
contextual notifications, and interact with a virtual assistant powered by artificial intelligence.
To achieve this, technologies such as web scraping, large language models (LLMs),
geolocation, push notifications, Firebase Authentication, and an architecture based on
GraphQL and MongoDB were integrated.

The methodology combined user-centered design, iterative development, and modularity.
Intuitive user interfaces were developed, and extensive unit, integration, and load testing
was conducted to validate system robustness. The resulting platform improves the everyday

7

Informe de Proyecto Final

financial experience, empowers users through actionable and transparent information, and
promotes both digital inclusion and financial awareness.

SaveApp not only solves a practical issue but also introduces a new standard in the
accessibility of banking benefits. Its extensible architecture and user-first approach make it a
candidate for regional expansion and integration with fintech partners and loyalty programs.
This project demonstrates the real-world impact of applying technology to enhance personal
financial well-being.

8

Informe de Proyecto Final

PRESENTACIÓN DEL TEMA
En la actualidad, el sistema financiero argentino ofrece una gran cantidad de promociones,
beneficios y descuentos asociados al uso de tarjetas de crédito y débito emitidas por
distintos bancos y entidades emisoras. Estos beneficios, si bien son atractivos y en muchos
casos significativos, se encuentran fragmentados y distribuidos en múltiples sitios web,
aplicaciones, correos electrónicos o incluso mensajes impresos, lo que dificulta su
visualización en tiempo real por parte del consumidor. Esta dispersión de información
genera una pérdida de oportunidades de ahorro y una desconexión entre el usuario y los
beneficios que legítimamente le corresponden.

SaveApp nace como una respuesta innovadora a esta problemática: una aplicación móvil
basada en inteligencia artificial que permite a los usuarios acceder de manera sencilla,
centralizada y contextual a los descuentos disponibles con sus tarjetas, utilizando para ello
tecnologías como Web Scraping, LLMs para el análisis semántico de los términos,
geolocalización para identificar beneficios cercanos y un sistema de recomendaciones
personalizadas.

A diferencia de otras soluciones presentes en el mercado, SaveApp no depende del ingreso
manual de datos por parte de los usuarios o comunidades colaborativas, como ocurre con
sitios como Descuentazo. Tampoco se restringe a sistemas cerrados de fidelización. En
cambio, automatiza el relevamiento y análisis de información pública, integrando datos con
una lógica inteligente que guía al usuario en su toma de decisiones cotidianas.

SaveApp no solo representa una herramienta de utilidad inmediata para la economía
personal, sino también una propuesta tecnológica integral que pone en valor el uso
combinado de técnicas modernas de software, inteligencia artificial y diseño de experiencia
de usuario centrado en el consumidor.

9

Informe de Proyecto Final

GLOSARIO
●​ Web Scraping (o Web Crawling): Técnica de programación que permite la

extracción automatizada de contenido estructurado o no estructurado desde páginas
web.

●​ Análisis semántico: Proceso de interpretación automática del lenguaje natural
utilizado en las promociones bancarias, con el fin de extraer condiciones clave como
topes, días válidos, tarjetas compatibles y medios de pago. En SaveApp se realiza
mediante modelos de lenguaje (LLMs).

●​ LLM (Large Language Model): Modelos de lenguaje de gran escala entrenados
sobre grandes cantidades de texto para comprender y generar lenguaje humano.

●​ PWA (Progressive Web App): Aplicación web progresiva, diseñada para
comportarse como una app nativa en dispositivos móviles.

●​ Open Banking: Marco regulatorio y técnico que permite a los usuarios compartir de
manera segura sus datos financieros con terceros a través de interfaces abiertas
(APIs), no disponible en Argentina.

●​ ETL (Extract, Transform, Load): Proceso de extracción, transformación y carga de
datos desde diversas fuentes a sistemas de almacenamiento estructurado.

●​ Crowdsourced: Contenido generado por los propios usuarios de una plataforma, en
lugar de ser cargado por una entidad central. Su calidad depende de la colaboración
comunitaria.

●​ Geofencing: Técnica de geolocalización que permite definir zonas virtuales
alrededor de puntos geográficos reales. Al ingresar o salir de esas zonas, la app
puede activar notificaciones automáticas.

●​ Asistente virtual: Interfaz conversacional que permite a los usuarios interactuar en
lenguaje natural para consultar promociones disponibles, recibir sugerencias
personalizadas y hacer seguimiento de reintegros. Se alimenta de datos
contextuales del usuario y del entorno.

●​ Beneficio bancario: Cualquier tipo de promoción ofrecida por una entidad
financiera, como descuentos, reintegros o cuotas sin interés, aplicables al consumo
con tarjetas emitidas por dicha entidad.

●​ Comercio adherido: Establecimiento que participa en una promoción específica y
acepta beneficios bancarios. En SaveApp se identifican automáticamente a partir del
análisis de términos y condiciones.

●​ Condiciones de aplicación: Conjunto de requisitos que deben cumplirse para
acceder a un beneficio, como tipo de tarjeta, banco emisor, monto mínimo de
compra, días válidos o canal de pago.

10

Informe de Proyecto Final

●​ Normalización de datos: Proceso técnico mediante el cual se transforman datos
provenientes de distintas fuentes en un formato homogéneo.

●​ Developer experience (DX o DevEx): Percepción y satisfacción de los
desarrolladores al usar herramientas, plataformas y procesos, buscando reducir
fricciones y facilitar un desarrollo ágil y eficiente.

●​ Low Code / Plataforma Low Code: Entorno de desarrollo que permite construir
aplicaciones con mínima escritura de código mediante componentes visuales,
plantillas y lógica predefinida.

●​ Privacy-by-design: Enfoque que incorpora la privacidad y la protección de datos
desde el inicio del diseño del sistema, aplicando principios como minimización de
datos, finalidad específica, seguridad por defecto, retención limitada, transparencia,
consentimiento y control del usuario, y seudonimización/anonimización cuando
corresponde.

●​ Agentes de IA: Componentes (software) que perciben un contexto, toman
decisiones y ejecutan acciones autónomas o semiautónomas para lograr un objetivo.

●​ Schemas (GraphQL y tipado): Estructuras tipadas que definen de forma explícita
las entidades, sus campos y relaciones, además de las operaciones disponibles
(queries y mutations).

●​ Lock-in (Cloud Providers): Situación en la que una arquitectura queda atada a
servicios específicos de un proveedor cloud, dificultando migraciones o
incrementando costos y riesgos.

●​ Infrastructure as Code (IaC): Práctica de describir y gestionar la infraestructura
mediante archivos de configuración versionables, permitiendo reproducibilidad,
auditoría y despliegues consistentes.

●​ Points of Interest (POIs): Identificadores geoespaciales estandarizados que
representan un mismo comercio o lugar físico, aun cuando existan ligeras
variaciones en nombre, dirección o coordenadas reportadas. Se utilizan para
consolidar registros (deduplicación), evitar que pequeñas diferencias de lat/long
generen múltiples puntos, y mantener un historial único por ubicación.

11

Informe de Proyecto Final

DIAGNÓSTICO DEL PROBLEMA

Contexto Actual
A medida que crece la oferta de servicios financieros y se diversifican los medios de pago,
también lo hacen los programas de beneficios que ofrecen los bancos y entidades emisoras
de tarjetas. Esta explosión de promociones tiene el potencial de mejorar la economía diaria
de millones de personas, pero se encuentra con una barrera crítica: la visibilidad de la
información.

En un país como Argentina, donde no existe un sistema de Open Banking que estandarice
el acceso a los datos financieros, los usuarios están obligados a consultar múltiples fuentes
de forma manual para conocer las promociones vigentes. Esto incluye visitar los sitios de
cada banco y navegar por sus buscadores de promociones, cada uno con diferentes
criterios de filtrado, formatos y condiciones de uso.

Problemas Identificados
●​ Desconocimiento de promociones: Diversas encuestas indican que muchos

tarjetahabientes no recuerdan ni conocen los descuentos y recompensas disponibles
al comprar. Por ejemplo, un sondeo de CreditCards.com halló que 23 % de los
titulares no redimió sus recompensas durante el último año y 11 % no sabe cómo
canjearlas [1]. Otro compendio de estadísticas muestra que 69 % de los usuarios con
tarjetas de recompensas acumula puntos o millas sin usar y 14 % reconoce que le
cuesta entender cómo aprovecharlos [2]. Además, un estudio de satisfacción de
J.D. Power encontró que sólo 67 % de los encuestados comprende cómo acumular
recompensas, 55 % sabe que sus puntos no expiran y apenas 30 % considera que
siempre maximiza los beneficios de su tarjeta [3]. Asimismo, un reportaje citó que
más de un tercio de los miembros de programas de lealtad no sabe cómo redimir las
ofertas y unos cuatro de cada diez dejan expirar sus millas [4].

●​ Falta de centralización: La información sobre descuentos y promociones está
dispersa en múltiples páginas web y contratos. Muchos emisores no promocionan
sus beneficios en un único sitio accesible, lo que obliga a los usuarios a leer
términos y condiciones extensos o a revisar varios canales [7]. En algunos casos,
para canjear millas o descuentos hay que ingresar al portal específico del banco o
llamar a líneas telefónicas, lo que evidencia la ausencia de un sistema centralizado y
sencillo [8].

●​ Falta de claridad: Para obtener ciertos descuentos es necesario cumplir requisitos
que no siempre quedan claros. Según CreditCards.com, 9 % de los encuestados
encuentra demasiado confusos los programas de recompensas y otro 9 % no los usa
por falta de tiempo [1]. CardRates detalla que entre quienes no canjearon sus puntos,
23 % los consideró de poco valor, 11 % no sabía cómo redimirlos y 9 % los calificó de

12

Informe de Proyecto Final

confusos [2]. El estudio de J.D. Power corrobora esta falta de comprensión general [3],
mientras que un análisis periodístico indica que más de un tercio de los participantes
en programas de fidelidad no sabe cómo canjear las ofertas y que unos cuatro de
cada diez estadounidenses permiten que sus millas caduquen por confusión [4].

●​ Interfaz inadecuada: Las aplicaciones bancarias y plataformas de recompensas no
priorizan la visualización clara de beneficios ni notifican en contexto. Los datos de
J.D. Power muestran que sólo 30 % de los usuarios siente que siempre maximiza
sus recompensas, lo que sugiere una experiencia de usuario deficiente [3].
CardRates apunta que 9 % de los encuestados considera confusos los programas, lo
cual también puede estar relacionado con interfaces poco intuitivas [2], y
CreditCards.com reporta un porcentaje similar de clientes que perciben complejidad
en los programas [1].

●​ Inexistencia de automatización: No existen mecanismos públicos que integren y
actualicen todas las promociones disponibles para el usuario final. En algunos
países, los clientes deben consultar manualmente los portales de cada banco o
llamar a las líneas de atención para conocer o canjear sus beneficios [8]. La falta de
herramientas automatizadas y de educación financiera adecuada sobre los seguros
y servicios que ya están incluidos en las tarjetas también contribuye a que estos
pasen inadvertidos [6].

Oportunidades
Frente a esta problemática, surge una oportunidad única de ofrecer una solución
tecnológica que simplifique y automatice todo el proceso desde la recolección de beneficios
hasta su análisis personalizado. SaveApp se presenta como una herramienta innovadora
que acerca la inteligencia al consumo cotidiano, donde una buena elección de pago puede
traducirse en un ahorro real y significativo.

A su vez, representa una oportunidad para los comercios, que podrán atraer nuevos clientes
y aumentar sus ventas al hacer visibles sus promociones, y para los bancos, que podrán
potenciar el uso de sus tarjetas, mejorar la fidelización de sus usuarios y comprender mejor
sus hábitos de consumo.

OBJETIVOS

Objetivo General
Desarrollar una aplicación móvil basada en inteligencia artificial y web scraping que permita
a los usuarios optimizar el uso de sus tarjetas bancarias, accediendo a beneficios y
descuentos de forma contextual y personalizada, integrando funciones de asesoramiento
financiero, seguimiento de reintegros y visualización inteligente de promociones.

13

Informe de Proyecto Final

Objetivos Específicos
●​ Diseñar e implementar un sistema de registro y autenticación de usuarios que

permita la carga de tarjetas sin requerir información sensible, garantizando la
protección de los datos personales y cumpliendo con las buenas prácticas de
seguridad informática.

●​ Desarrollar y desplegar crawlers web automáticos capaces de recopilar, actualizar y
almacenar descuentos y beneficios desde los portales oficiales de bancos y
billeteras virtuales, asegurando la integridad y consistencia de la información
obtenida.

●​ Aplicar modelos de lenguaje (LLM) para el análisis automatizado de los términos y
condiciones de las promociones, con el fin de identificar y clasificar las variables más
relevantes, tales como tipo de beneficio, vigencia, medio de pago y restricciones.

●​ Integrar un sistema de geolocalización que permita detectar comercios cercanos con
beneficios activos, optimizando la precisión en la ubicación y la pertinencia de las
sugerencias al usuario.

●​ Implementar un sistema de notificaciones personalizadas en tiempo real, que
informe a los usuarios sobre descuentos aplicables según su ubicación, historial de
uso y preferencias, priorizando la oportunidad y relevancia de la información
transmitida.

●​ Diseñar y desarrollar un módulo de seguimiento de reintegros, que posibilite el
registro de compras con beneficios y la notificación automática al usuario cuando se
cumpla el plazo de acreditación correspondiente.

●​ Desarrollar un asistente virtual basado en inteligencia artificial, capaz de interpretar
consultas en lenguaje natural, visualizar las ofertas disponibles y ofrecer
recomendaciones personalizadas sobre el uso óptimo de las tarjetas y beneficios
asociados.

●​ Diseñar e implementar una arquitectura backend escalable y segura, que soporte la
gestión eficiente de usuarios, beneficios y comercios, aplicando estándares actuales
en materia de desarrollo seguro y despliegue en entornos cloud.

●​ Construir una base de datos optimizada para consultas geoespaciales y relaciones
dinámicas, que permita un acceso ágil y eficiente a la información de descuentos,
ubicaciones y reintegros registrados.

●​ Diseñar y desarrollar una interfaz de usuario intuitiva y responsiva para plataformas
Android e iOS, validada mediante pruebas de usabilidad con un grupo piloto de
usuarios, orientada a garantizar una experiencia fluida y satisfactoria.

14

Informe de Proyecto Final

MARCO TEÓRICO
Contexto General del Problema
El sistema financiero argentino, al igual que en muchos otros países, utiliza desde hace
décadas herramientas de incentivo al consumo asociadas al uso de tarjetas de crédito y
débito. Estas estrategias comerciales, impulsadas tanto por los bancos como por los
comercios, se han vuelto un pilar en la dinámica del consumo minorista, no sólo como
estímulo de ventas sino como mecanismo de fidelización del cliente.

El universo de beneficios disponibles es amplio y se diversifica constantemente: se ofrecen
reintegros, descuentos, cuotas sin interés y promociones especiales que varían según el
rubro, el banco emisor, el día de la semana, el canal de compra (online o presencial), y el
medio de pago. Rubros como supermercados, gastronomía, vestimenta, electrónica,
turismo, combustibles, videojuegos y farmacias concentran gran parte de estas campañas
promocionales, aunque también se extienden a servicios, hogar, deportes, hoteles y más.

Estos beneficios, si bien están pensados como un valor agregado para el consumidor,
presentan una complejidad intrínseca: su carácter volátil y condicionado. Las promociones
tienen una validez temporal corta, se actualizan con frecuencia, y están sujetas a múltiples
condiciones de aplicación. Este panorama ha generado un terreno fértil para el desarrollo de
herramientas que permitan interpretar, clasificar y contextualizar estos beneficios con
precisión.

Clasificación y características de las ofertas
Para entender el rubro, es necesario identificar los principales tipos de beneficios que
ofrecen los bancos y entidades financieras:

●​ Reintegro: Devolución de una parte del monto total de la compra, acreditada en la
cuenta del cliente luego de un plazo determinado. Ejemplo: “10% de reintegro en
farmacias, tope $1.500, acreditación dentro de los 30 días hábiles.”

●​ Descuento: Reducción directa en el precio al momento de realizar la compra.
Ejemplo: “20% de descuento pagando con Visa Banco Galicia los miércoles.”

●​ Cuotas: Posibilidad de pagar en varias cuotas sin interés (o con tasas
promocionales), generalmente para compras superiores a cierto monto. Ejemplo: “6
cuotas sin interés en electrodomésticos pagando con Mastercard BBVA.”

●​ Promociones: Ofertas de tipo “x por y”, como 2x1 o 3x2, muchas veces limitadas a
productos o marcas específicas. Ejemplo: “2x1 en entradas de cine con tarjeta
Naranja los jueves.”

Estas ofertas pueden superponerse entre sí, tener múltiples restricciones y variar en su
aplicabilidad según el medio de pago (débito, crédito, QR, etc.). Además, suelen tener
vigencia limitada, lo que obliga al usuario a mantenerse constantemente actualizado.

15

Informe de Proyecto Final

Otra característica relevante es que los términos y condiciones de muchas ofertas siguen
patrones similares: se especifica el tipo de tarjeta, banco emisor, días válidos, monto
mínimo, tope máximo, locales adheridos, medios de pago aceptados, y plazos para el
reintegro (si aplica). Sin embargo, esta información se encuentra redactada con lenguaje
jurídico complejo, dificultando su comprensión.

Análisis de Campo
El análisis de campo se orientó a comprender la dinámica real de las promociones
bancarias y de comercios para diseñar un sistema capaz de descubrir, normalizar y
mantener vigente la información crítica para el usuario. Para ello se combinaron técnicas de
desk research sobre fuentes públicas (portales de bancos, billeteras y retailers),
exploraciones controladas de scraping para evaluar estructura y ritmo de cambio de las
páginas, una revisión sistemática de Términos y Condiciones (TyC) para identificar patrones
operativos y excepciones, y un mapeo exhaustivo de las fuentes donde cada entidad
efectivamente publica y actualiza sus beneficios.

Esta investigación devolvió una serie de hallazgos clave:

1.​ Alta volatilidad: Las ofertas son marcadamente temporales y en la mayoría de los
casos su vigencia efectiva ronda 1 mes. Esto exige políticas de refresco frecuentes
(al menos mensuales).

2.​ Cobertura por múltiples marcas y categorías: En la mayoría de los casos, las
promociones se vinculan a una única marca o comercio. Sin embargo, también se
presentan ofertas que abarcan múltiples marcas y, en otros casos, beneficios
aplicables a categorías generales (por ejemplo, “restaurantes” o “farmacias”). Estos
escenarios anticipan la necesidad de definir los esquemas y las reglas para
representar correctamente los rubros y las marcas.

3.​ Información esencial oculta en TyC: Los requisitos que habilitan o invalidan el
beneficio (medios de pago, topes, exclusiones, días, canales, plazos de reintegro)
suelen estar dispersos y redactados en lenguaje natural. Al tratarse de datos no
estructurados, será necesario implementar técnicas de procesamiento de lenguaje
natural para extraer e identificar los datos necesarios para el negocio.

4.​ Localización de fuentes y datos desestructurados: Identificar dónde publica cada
banco implicó rastrear buscadores de promociones. La estructura es, en general,
heterogénea lo que requirió estrategias de scraping adaptativas y un pipeline de
normalización por fuente.

5.​ Barreras geográficas y segmentación: Las ofertas presentan alcance geográfico,
principalmente por país y en algunos casos por provincia. Esto implica que el
alcance máximo es a nivel país, debiendo dividir las ofertas por país en caso de
expandirse fuera de Argentina, evitando así posibles errores por diferencias de
moneda, normativa o disponibilidad.

16

Informe de Proyecto Final

6.​ Catálogo propio de tarjetas y comercios adheridos: Los TyC muchas veces
enumeran solo exclusiones (“no aplica para…”) o declaran “todas las tarjetas del
banco”, sin detallar producto por producto. Asimismo, cuando la oferta dice “para
todos los locales de la marca”, no lista cada sucursal. Conclusión: es imprescindible
mantener un catálogo propio de tarjetas (banco, producto, marca de servicio) y un
catálogo de comercios adheridos.

7.​ Patrones repetidos de TyC por banco: Un mismo banco tiende a reutilizar
plantillas (estructura y frases) entre promociones. Este comportamiento abre la
posibilidad de incorporar una lógica de caché a nivel de plantilla o banco, lo que
permitiría disminuir invocaciones innecesarias y, en consecuencia, optimizar costos y
tiempos de procesamiento.

8.​ Necesidad de deduplicación y trazabilidad: Debido a re-publicaciones y cambios
menores (título/fecha), el pipeline debe usar un identificador estable por fuente y
campos de huella (hash) para hacer upserts idempotentes y evitar insertar
duplicados a la base de datos.

Como cierre del análisis de campo, no se realizó una investigación de mercado formal en
esta etapa, la propuesta nace de una necesidad observada por el equipo y fue validada de
manera informal con conocidos, además de una encuesta exploratoria en el ámbito
universitario que mostró alta aceptación. Las observaciones de uso indican que muchas
personas dependen de la cartelería en los locales o de la información del personal para
enterarse de beneficios, mientras que otras consultan manualmente billeteras virtuales o
apps bancarias, un proceso percibido como tedioso. Estos hallazgos confirman la
oportunidad de una solución que centralice información, haga explícitas las condiciones
clave y reduzca fricción en el acceso a las promociones.

Soluciones similares en el mercado
Existen en el mercado argentino y global diversas plataformas que, desde distintos
enfoques, buscan facilitar el acceso a descuentos, beneficios y promociones asociadas al
consumo. Sin embargo, la mayoría de ellas presenta limitaciones importantes al momento
de brindar una solución integral, contextualizada y personalizada como la que propone este
proyecto.

A continuación se describen algunas de las alternativas existentes y sus principales
características:

●​ Descuentazo: Es una plataforma argentina que reúne promociones bancarias en
diversos rubros. Su contenido es de tipo crowdsourced, es decir, cargado por la
comunidad de usuarios, lo cual implica una cobertura variable y sujeta a validación
manual. Si bien permite filtrar por categoría o banco, no ofrece personalización
automática según las tarjetas del usuario ni recomendaciones contextuales por
ubicación. El diseño se basa en una exploración activa del usuario, sin inteligencia
aplicada para la toma de decisiones.

17

Informe de Proyecto Final

●​ MaxRewards: Esta aplicación está orientada al mercado norteamericano y se
enfoca en maximizar la obtención de puntos y recompensas de tarjetas de crédito.
Se integra con los sistemas de fidelización (rewards programs) de emisores como
American Express o Chase. Aunque incluye recomendaciones sobre qué tarjeta
conviene usar en cada transacción, su foco no está en los descuentos bancarios ni
en la lectura semántica de promociones específicas, sino en el rendimiento de
acumulación de puntos. No es aplicable al mercado argentino, donde este tipo de
programas tiene baja penetración.

●​ MODO: Aplicación argentina que actúa como billetera virtual y medio de pago
unificado. Incluye una página de promociones propias en conjunto con los bancos
adheridos, pero está limitada a aquellas entidades que tienen convenio con la app.
No permite visualizar beneficios externos a su ecosistema, ni integrar todas las
tarjetas que un usuario pueda tener. Además, las promociones se muestran de
manera general, sin análisis personalizado de términos, compatibilidades o
seguimiento de reintegros.

●​ Ratoneando: Plataforma centrada exclusivamente en comparar precios de
productos en supermercados. No considera promociones bancarias ni beneficios
personalizados según tarjetas. Su foco es el ahorro directo por precio de lista, sin
analizar condiciones financieras asociadas al método de pago.

●​ Tuki y Mosca: Aplicaciones que trabajan con cupones de descuento, generalmente
vinculados a marcas o categorías específicas. Están centradas en promociones
propias o acuerdos con comercios puntuales, no en beneficios emitidos por bancos.
Tampoco permiten integrar datos de tarjetas ni hacer recomendaciones
personalizadas, y su modelo está basado en la generación de códigos o vouchers
que deben presentarse al momento de la compra.

●​ Clash: Es una aplicación argentina relativamente nueva, que no se encontró al
momento de la investigación inicial de este proyecto. A diferencia de otras
soluciones más estructuradas, Clash se posiciona con un enfoque más cercano al
de una red social de descuentos: son los propios comercios quienes suben sus
promociones de forma directa a la plataforma.

En síntesis, estas alternativas cubren distintos nichos (desde medios de pago, cupones,
precios, o programas de puntos) pero ninguna ofrece una solución transversal,
automatizada y centrada en el usuario como lo plantea SaveApp. ​
La mayoría carece de:

-​ Integración entre múltiples emisores de tarjetas
-​ Lectura automatizada de términos y condiciones
-​ Geolocalización con notificaciones proactivas
-​ Visualización del impacto económico (ahorros y reintegros)
-​ Un asistente personalizado basado en IA.

18

Informe de Proyecto Final

Tecnologías disponibles

Este apartado presenta una exploración y análisis exhaustivo del ecosistema de
herramientas tecnológicas candidatas para el desarrollo de SaveApp. La selección de cada
componente no es una decisión trivial; es un acto estratégico que definirá la viabilidad del
producto, su resiliencia ante cambios externos, su capacidad para escalar, la calidad de la
experiencia del usuario final y, en última instancia, los costos operativos. La propia
naturaleza volátil de las ofertas, que cambian con frecuencia y requieren adaptación
inmediata, fue un factor determinante en la elección de tecnologías y en el diseño de la
arquitectura del sistema. Cada tecnología se evalúa desde una perspectiva crítica y
contextual, sopesando su aplicabilidad en el dinámico y particular escenario argentino, la
profundidad de su curva de aprendizaje, la solidez de su comunidad de soporte y su
mantenibilidad a largo plazo.

1. Mobile Backend

Comunicación entre Cliente y Servidor (APIs)

La comunicación entre la aplicación móvil (el cliente) y el servidor (el backend) es el torrente
sanguíneo del sistema. La eficiencia, flexibilidad y robustez de esta comunicación, definida
por la arquitectura de su Interfaz de Programación de Aplicaciones (API), impacta
directamente en la velocidad de carga de la aplicación, el consumo de datos móviles del
usuario y la capacidad de los desarrolladores para crear nuevas funcionalidades
rápidamente.

REST (Representational State Transfer)

●​ ¿Qué es? Es un estilo arquitectónico para construir servicios web, basado en la idea
de tratar la información como "recursos" que se manipulan utilizando los verbos
estándar del protocolo HTTP (GET, POST, PUT, DELETE).

●​ Ventajas y Desventajas Es un enfoque intuitivo, ampliamente conocido y fácil de
implementar y depurar. Su principal desventaja son los problemas de
"under-fetching" (necesitar hacer múltiples llamadas para obtener todos los datos) y
"over-fetching" (obtener más datos de los necesarios), lo que genera latencia y
consume el plan de datos del usuario de forma ineficiente.

●​ ¿Para qué la usaríamos? Sería una opción viable y tradicional para construir
nuestra API. Sin embargo, tendríamos que diseñar los endpoints cuidadosamente
para mitigar sus ineficiencias, posiblemente creando endpoints específicos para
cada vista de la aplicación.

GraphQL

●​ ¿Qué es? Es un lenguaje de consulta para APIs que permite al cliente solicitar
exactamente los datos que necesita, y nada más, en una sola petición. El poder de
decidir la forma de la respuesta se traslada del servidor al cliente.

19

Informe de Proyecto Final

●​ Ventajas y Desventajas Su ventaja fundamental es que soluciona de raíz los
problemas de under-fetching y over-fetching, resultando en una comunicación
mucho más eficiente, tiempos de carga más rápidos y menor consumo de datos y
batería para el usuario. La contrapartida es una mayor complejidad inicial en el
backend.

●​ ¿Para qué la usaríamos? Sería la arquitectura de API preferida para SaveApp. Nos
permitiría que la aplicación móvil construyera consultas complejas para obtener
todos los datos necesarios para una pantalla en una única llamada de red,
mejorando drásticamente la experiencia del usuario final.

Autenticación y Gestión de Sesiones

La autenticación es el proceso de verificar la identidad de un usuario, mientras que la
gestión de sesiones es el mecanismo para mantener esa identidad verificada a través de
múltiples interacciones. Para SaveApp, este sistema debe ser una fortaleza segura que
proteja los datos del usuario, pero a la vez una puerta de entrada casi invisible que minimice
la fricción en el acceso.

JWT (JSON Web Tokens)

●​ ¿Qué es? Es un estándar abierto para crear tokens de acceso que permiten una
autenticación "stateless" (sin estado). El token es una cadena de texto firmada
digitalmente que contiene información del usuario y una fecha de expiración.

●​ Ventajas y Desventajas La ventaja es que el servidor no necesita mantener un
registro de las sesiones activas, lo que facilita la escalabilidad. El principal desafío es
la revocación: un token robado es válido hasta que expira, lo que se mitiga usando
tokens de corta duración junto con "refresh tokens".

●​ ¿Para qué la usaríamos? Sería el mecanismo central para gestionar las sesiones
de los usuarios. Tras el login, el cliente recibiría un JWT que incluiría en cada
petición a la API para verificar su identidad de forma segura y eficiente.

Firebase Authentication

●​ ¿Qué es? Es el servicio de autenticación de la plataforma BaaS (Backend as a
Service) de Google. Ofrece un sistema de identidad completo y robusto que gestiona
todo el ciclo de vida del usuario, desde el registro y el inicio de sesión hasta la
recuperación de contraseñas y el almacenamiento seguro de credenciales.

●​ Ventajas y Desventajas La principal ventaja es su profunda integración con todo el
ecosistema de Firebase (Firestore, Cloud Functions, Hosting), lo que simplifica el
desarrollo. Su nivel gratuito es muy generoso, ideal para un MVP. La desventaja es
que puede generar una fuerte dependencia del ecosistema de Google (vendor
lock-in) y puede ser menos flexible que soluciones especializadas para flujos de
autenticación empresariales muy complejos.

20

Informe de Proyecto Final

●​ ¿Para qué la usaríamos? Sería la opción principal y más estratégica para el MVP
de SaveApp. La usaríamos para manejar de forma rápida y segura todo el flujo de
registro y login de usuarios, incluyendo el inicio de sesión con proveedores sociales
como Google y Apple, acelerando el desarrollo y garantizando la seguridad desde el
primer día.

Supabase Auth

●​ ¿Qué es? Es el módulo de autenticación de Supabase, una plataforma que se
posiciona como la alternativa de código abierto a Firebase. Está construido sobre
PostgreSQL y se integra directamente con su sistema de seguridad a nivel de fila
(Row Level Security), permitiendo un control de acceso a los datos muy granular.

●​ Ventajas y Desventajas Su gran ventaja es ser de código abierto, lo que elimina el
"vendor lock-in" y permite la opción de auto-hospedar la solución para un control
total. Su integración nativa con PostgreSQL es un plus si ya se usa esa base de
datos. Como plataforma más joven que Firebase, algunas partes de su ecosistema
podrían ser menos maduras.

●​ ¿Para qué la usaríamos? La elegiríamos si la estrategia del proyecto fuera priorizar
el uso de tecnología de código abierto para evitar la dependencia de un solo
proveedor. Sería especialmente potente para SaveApp al combinarla con
PostgreSQL como base de datos principal, unificando la lógica de autenticación y los
permisos de acceso a los datos.

Auth0

●​ ¿Qué es? Es una plataforma de identidad como servicio (IDaaS) de nivel
empresarial, ahora propiedad de Okta. Es una solución altamente especializada y
conocida por su extrema flexibilidad para manejar prácticamente cualquier escenario
de autenticación y autorización.

●​ Ventajas y Desventajas Su ventaja es una flexibilidad inigualable, ideal para
requisitos complejos como el inicio de sesión único (SSO) empresarial, autenticación
para múltiples tipos de clientes (B2B, B2C) y la personalización de flujos con reglas y
"Actions". La principal desventaja es su costo, que puede ser significativamente más
alto que otras opciones, y su complejidad puede ser excesiva para un simple MVP.

●​ ¿Para qué la usaríamos? Consideraríamos usar Auth0 si SaveApp tuviera desde el
inicio requisitos de autenticación muy complejos o si el modelo de negocio incluyera
una vertiente empresarial (B2B). En general, es una solución para una etapa de
madurez del producto más que para el lanzamiento inicial.

Better Auth

●​ ¿Qué es? Better Auth es un framework de autenticación de código abierto, enfocado
en el ecosistema de TypeScript. A diferencia de los servicios de terceros, su filosofía
es proporcionar las herramientas para que los desarrolladores "construyan su propia

21

Informe de Proyecto Final

autenticación" de forma fácil y segura directamente en su backend y base de datos,
sin depender de un servicio externo.

●​ Ventajas y Desventajas La ventaja es el control total y la ausencia de dependencia
de terceros, combinando la seguridad de una solución robusta con la flexibilidad de
tener el código en tu propio sistema. Al ser una herramienta más nueva y un
framework en lugar de un servicio, requiere que el equipo de desarrollo asuma la
responsabilidad de la implementación y el hosting.

●​ ¿Para qué la usaríamos? La elegiríamos si quisiéramos el máximo control sobre
nuestro sistema de autenticación sin tener que construir toda la lógica de seguridad
desde cero. Sería una opción para un equipo con experiencia técnica que valora la
soberanía sobre los datos y la arquitectura, pero no quiere reinventar las
complejidades de la gestión de sesiones y tokens.

Otros

Mongoose

●​ ¿Qué es? Es una biblioteca de modelado de datos para MongoDB y Node.js, que
proporciona una capa de abstracción sobre la base de datos. Permite definir
esquemas con validaciones, middlewares y métodos personalizados para manejar
los documentos de MongoDB de manera más controlada y estructurada.

●​ Ventajas y Desventajas: La ventaja principal es que impone una estructura clara
sobre una base de datos NoSQL, simplificando validaciones y relaciones, y
ofreciendo potentes herramientas de consulta. Como desventaja, puede limitar
ciertas operaciones avanzadas de MongoDB y añadir una ligera sobrecarga de
rendimiento frente a usar el driver nativo.

●​ ¿Para qué la usaríamos? Para definir y gestionar los modelos de datos de
SaveApp, como usuarios, tarjetas, ofertas y transacciones, asegurando consistencia
en los datos y centralizando la lógica de negocio relacionada con la persistencia.

Typegoose

●​ ¿Qué es? Es una librería que une Mongoose y TypeScript, permitiendo definir
modelos de Mongoose utilizando clases y decoradores de TypeScript. De esta
forma, se aprovecha el poder del tipado estático para crear modelos de datos de
manera más intuitiva y segura, eliminando la necesidad de definir interfaces
separadas para los esquemas.

●​ Ventajas y Desventajas: La principal ventaja es que reduce la redundancia de
código y mantiene una única fuente de verdad para la estructura de los datos (la
clase de TypeScript). Esto mejora la legibilidad y el mantenimiento, además de
ofrecer un autocompletado más preciso en el IDE. Su principal desventaja es que
introduce una capa de abstracción adicional sobre Mongoose, lo que puede generar
una pequeña curva de aprendizaje y dependencia de otra librería.

22

Informe de Proyecto Final

●​ ¿Para qué la usaríamos? Para definir los modelos de datos de SaveApp (usuarios,
tarjetas, etc.) directamente con clases de TypeScript. Esto nos permitirá tener un
código más limpio, seguro y fácil de entender, aprovechando al máximo las ventajas
del tipado estático en la interacción con la base de datos MongoDB.

TypeGraphQL

●​ ¿Qué es? Es un framework para construir APIs de GraphQL en Node.js utilizando
TypeScript y decoradores. Su enfoque se centra en el "code-first", donde el esquema
de GraphQL se genera automáticamente a partir de las clases y decoradores de
TypeScript, en lugar de tener que escribirlo manualmente en el lenguaje de
definición de esquemas (SDL).

●​ Ventajas y Desventajas: Su gran ventaja es que elimina la duplicación de tipos
entre el código de TypeScript y el esquema de GraphQL, simplificando enormemente
el desarrollo y asegurando que ambos estén siempre sincronizados. También se
integra de manera nativa con otras librerías del ecosistema de TypeScript. Como
desventaja, al generar el esquema automáticamente, puede ofrecer menos control
granular que el enfoque "schema-first" y su ecosistema es más pequeño que el de
soluciones como Apollo Server (aunque se integra con él).

●​ ¿Para qué la usaríamos? Para construir la API de GraphQL de SaveApp. Nos
permitiría definir los resolvers, queries y mutations usando clases de TypeScript, lo
que agilizaría el desarrollo, reduciría errores y garantizaría que la API esté
fuertemente tipada y bien documentada desde el propio código.

2. Mobile App

Arquitecturas Móviles

En este ámbito podemos distinguir tres enfoques principales para el desarrollo de
aplicaciones: multiplataforma, nativo y basado en web (PWA).
Cada uno presenta ventajas y desventajas que impactan directamente en los costos,
tiempos de desarrollo, capacidades técnicas y calidad final del producto.

Arquitecturas Basadas en Web

Progressive Web Apps (PWA)

●​ ¿Qué es? Una PWA es una aplicación web que combina lo mejor de las
páginas web y las aplicaciones móviles. Funciona directamente desde el
navegador, pero puede instalarse en el dispositivo y trabajar sin conexión. Se
desarrolla con tecnologías web estándar (HTML, CSS, JavaScript) y es
independiente de las tiendas de aplicaciones.

●​ Ventajas y Desventajas Su mayor ventaja es que permite llegar a cualquier
dispositivo con un único desarrollo web, eliminando la necesidad de publicar
y mantener versiones separadas para iOS y Android. Reduce costos, acelera

23

Informe de Proyecto Final

el tiempo de salida al mercado y facilita las actualizaciones sin pasar por
procesos de aprobación de tiendas. Sin embargo, sus capacidades están
limitadas frente a aplicaciones nativas o multiplataforma, especialmente en
iOS, donde algunas APIs y funciones (como push o acceso a hardware
avanzado) tienen soporte reducido.

●​ ¿Para qué la usaríamos? Una PWA sería una opción ideal para el
lanzamiento rápido de SaveApp en etapas iniciales, permitiendo validar el
producto con una base de usuarios amplia sin los costos del desarrollo
nativo. Facilitaría iteraciones rápidas y despliegues inmediatos, manteniendo
una experiencia consistente en móviles y escritorio.

Arquitecturas Móviles Multiplataforma

Estas tecnologías permiten lanzar un Producto Mínimo Viable (MVP) de manera eficiente,
compartiendo la mayor parte del código para llegar al mercado de iOS y Android
simultáneamente.

Flutter

●​ ¿Qué es? Flutter es un kit de herramientas de UI de código abierto creado
por Google. Permite construir aplicaciones para móvil, web y escritorio desde
una única base de código en lenguaje Dart. Su característica principal es que
utiliza su propio motor de renderizado (Skia) para dibujar cada píxel en la
pantalla.

●​ Ventajas y Desventajas Su mayor ventaja es la consistencia visual absoluta
entre plataformas y un ciclo de desarrollo extremadamente rápido gracias a
su función de "Stateful Hot Reload". Su rendimiento es prácticamente nativo.
La desventaja es que requiere aprender el lenguaje Dart y su ecosistema,
que es menos extendido que el de JavaScript.

●​ ¿Para qué la usaríamos? Flutter es un candidato ideal para desarrollar la
app. Nos permitiría construir una aplicación con una interfaz de usuario
atractiva y consistente para iOS y Android de forma rápida, reduciendo
costos y tiempo de llegada al mercado.

React Native

●​ ¿Qué es? React Native es un framework desarrollado por Meta (Facebook)
que permite crear aplicaciones para iOS y Android utilizando JavaScript y la
librería React. A diferencia de Flutter, actúa como un intermediario que utiliza
los componentes de UI nativos de cada plataforma.

●​ Ventajas y Desventajas Su gran ventaja es la posibilidad de reutilizar el
vasto ecosistema de librerías de JavaScript y React, muy abundantes en el
mercado. La principal desventaja es que la comunicación entre JavaScript y

24

Informe de Proyecto Final

el código nativo (el puente) puede convertirse en un cuello de botella para el
rendimiento en tareas intensivas.

●​ ¿Para qué la usaríamos? Al igual que Flutter, es una opción viable y
pragmática para el desarrollo de SaveApp, especialmente si el equipo ya
tiene experiencia en el ecosistema de React y JavaScript.

Kotlin Multiplatform (KMP)

●​ ¿Qué es? KMP es un enfoque híbrido que no busca compartir la interfaz de
usuario, sino toda la lógica de negocio subyacente. El núcleo de la aplicación
(llamadas a la API, acceso a base de datos, modelos) se escribe una vez en
Kotlin y se compila como una librería para Android y iOS, mientras que la UI
se construye de forma nativa en cada plataforma.

●​ Ventajas y Desventajas: Ofrece lo mejor de ambos mundos: la eficiencia de
no duplicar la lógica de negocio y la calidad y rendimiento de una interfaz
100% nativa. Su principal desventaja es la complejidad, ya que requiere
expertise en tres ecosistemas (Kotlin compartido, nativo iOS, nativo Android),
lo que lo hace menos ideal para un lanzamiento rápido.

●​ ¿Para qué la usaríamos? KMP no se perfila como una elección inicial para
SaveApp debido a su complejidad. Sin embargo, representa una excelente
opción de evolución a largo plazo, una vez que el producto esté maduro y
busquemos maximizar la calidad y el rendimiento sin reescribir la lógica
central.

Arquitecturas Móviles Nativas

Optar por una arquitectura nativa implica tomar la decisión estratégica de construir dos
aplicaciones separadas e independientes, una para iOS y otra para Android, utilizando los
lenguajes, herramientas y paradigmas de diseño específicos de cada plataforma. Esta vía,
aunque considerablemente más costosa en términos de tiempo, recursos y complejidad de
gestión, ofrece el mayor nivel posible de calidad, rendimiento e integración con el
ecosistema. Es el camino que suelen tomar las aplicaciones maduras que, habiendo
validado su modelo de negocio, buscan diferenciarse a través de una experiencia de
usuario superior y una simbiosis perfecta con el dispositivo del usuario.

Swift y el Ecosistema iOS

●​ ¿Qué es? Swift es el lenguaje de programación moderno, seguro y de alto
rendimiento creado por Apple para desarrollar aplicaciones en todo su
ecosistema (iOS, iPadOS, etc.). Para la interfaz, se utiliza el framework
SwiftUI, que permite un desarrollo declarativo y moderno.

●​ Ventajas y Desventajas La ventaja es que ofrece el máximo rendimiento
posible, una integración perfecta con el hardware y software del dispositivo
(como Face ID, Apple Wallet) y una experiencia de usuario que se siente

25

Informe de Proyecto Final

completamente en casa en la plataforma. La principal desventaja es el alto
costo y tiempo, ya que se debe desarrollar y mantener una base de código
completamente separada solo para los dispositivos de Apple.

●​ ¿Para qué la usaríamos? El desarrollo nativo con Swift sería el camino a
seguir si SaveApp, en una etapa de madurez, decidiera que la máxima
calidad y una diferenciación a través de una experiencia de usuario superior
en iOS es una prioridad estratégica, asumiendo los costos más elevados que
esto implica.

Kotlin y el Ecosistema Android

●​ ¿Qué es? Kotlin es el lenguaje de programación moderno, conciso y seguro,
designado por Google como el lenguaje oficial para el desarrollo de
aplicaciones Android. Funciona sobre la Máquina Virtual de Java (JVM) y es
100% interoperable con Java. Para la construcción de interfaces, se utiliza
Jetpack Compose, el moderno toolkit declarativo de Google que simplifica y
acelera el desarrollo de UI, siendo el equivalente directo a SwiftUI de Apple.

●​ Ventajas y Desventajas La principal ventaja es el acceso al máximo
rendimiento, fidelidad visual y la más profunda integración posible con las
funcionalidades del sistema operativo Android (widgets, notificaciones
avanzadas, servicios en segundo plano). La gran desventaja, además del
alto costo de mantener un código separado, es la fragmentación del
ecosistema Android: es necesario garantizar la compatibilidad en una
inmensa variedad de dispositivos, tamaños de pantalla y versiones del
sistema operativo, lo que incrementa el esfuerzo de pruebas.

●​ ¿Para qué la usaríamos? Al igual que Swift para iOS, usaríamos Kotlin y
Jetpack Compose si la estrategia a largo plazo de SaveApp fuera ofrecer la
experiencia de usuario de más alta calidad posible en la plataforma Android.
Dada la masiva cuota de mercado de Android en Argentina y Latinoamérica,
esta podría ser una decisión estratégica clave para lograr el liderazgo del
mercado, una vez que el modelo de negocio esté validado y se busque la
diferenciación a través de la excelencia del producto.

Geolocalización y Notificaciones Contextuales

Uno de los pilares de SaveApp es entregar información pertinente en el momento y lugar
exactos, convirtiendo los descuentos en oportunidades de ahorro proactivas.

Geofencing

●​ ¿Qué es? El Geofencing es una técnica que permite a una aplicación registrar
perímetros geográficos virtuales ("geofences") en el sistema operativo del teléfono.
En lugar de que la app pregunte constantemente por la ubicación, el sistema

26

Informe de Proyecto Final

operativo le notifica de forma pasiva cuando el dispositivo entra o sale de una de
estas áreas predefinidas.

●​ Ventajas y Desventajas Su ventaja radica en su alta eficiencia energética. El
sistema operativo utiliza fuentes de baja energía (torres de celular, Wi-Fi) para
monitorear la ubicación y solo activa el GPS brevemente si es necesario,
preservando la batería. La desventaja es que requiere una gestión cuidadosa desde
el backend para registrar las cercas correctas para cada usuario.

●​ ¿Para qué la usaríamos? Esta tecnología es la piedra angular para las
notificaciones contextuales. El backend enviaría a la app una lista de geofences
alrededor de los comercios con promociones relevantes para el usuario. Al detectar
la entrada a una de estas zonas, se activaría el flujo para enviar una notificación
push.

Notificaciones Push

●​ ¿Qué es? Son los servicios oficiales, seguros y optimizados que Google (FCM) y
Apple (APNs) proveen para que un servidor pueda enviar mensajes a una aplicación
en un dispositivo, incluso si la app no está en uso o la pantalla está apagada.

●​ Ventajas y Desventajas Son el estándar de la industria, altamente fiables, seguros
y eficientes en el uso de batería y datos. No tienen desventajas técnicas
significativas, pero su poder conlleva una gran responsabilidad en términos de
experiencia de usuario para no generar "fatiga de notificaciones".

●​ ¿Para qué la usaríamos? Son el vehículo final que entrega la alerta al usuario.
Cuando nuestro sistema detecte un evento de geofencing y valide que una
promoción es relevante, el servidor de SaveApp le ordenará a FCM o APNs que
envíen el mensaje construido ("¡Estás en COTO! Hoy tenés 20% de reintegro con tu
tarjeta Visa Galicia") al dispositivo del usuario.

APIs Geoespaciales

Para que la geolocalización y las notificaciones contextuales funcionen de forma confiable,
necesitamos una base sólida y actualizada de puntos geográficos (POIs) de comercios. Si
bien extraemos datos de comercios adheridos a partir de las propias ofertas, esa
información suele venir incompleta y poco estandarizada (nombres ambiguos, direcciones
parciales, falta de coordenadas). Por eso incorporamos un servicio externo especializado
para enriquecer, normalizar y geocodificar estos datos. Investigamos dos alternativas
principales: Google Maps Platform y el ecosistema de OpenStreetMap (OSM).

Google Maps Platform

Suite comercial con amplia cobertura, alta precisión y varias sub-APIs. Requiere clave,
cumple SLA empresariales y tiene costos por uso. Esta plataforma posee una gran precisión
y cobertura, ofrece mucha información y está bien documentada; sin embargo su costo
suele ser elevado. Las herramientas de la plataforma que se investigaron son las siguientes:

27

Informe de Proyecto Final

Places API

●​ ¿Qué hace? Búsqueda y detalle de lugares (Place Search + Place Details).
Permite encontrar sucursales por nombre, categoría o proximidad; devuelve
place_id, coordenadas, dirección, nombre, horario, teléfono, website, fotos y
rating.

●​ ¿Para qué la usaríamos? Se utilizaría para saber, en el caso de una oferta
multimarca, a qué marca pertenece cada comercio adherido que tiene la
oferta.

Geocoding API

●​ ¿Qué hace? Convierte direcciones a coordenadas (geocoding) y
coordenadas a direcciones legibles (reverse geocoding).

●​ ¿Para qué la usaríamos? Para la normalización de direcciones de ofertas
incompletas y para reverse geocoding para poder completar la ubicación con
sus coordenadas en el caso de que estas no sean provistas por la oferta
original.

OpenStreetMap (OSM)

Ecosistema abierto y colaborativo. Sin costos de licencia, pero con límites de uso en
servicios públicos y variabilidad de cobertura según zona. Su cobertura y cantidad de
información es menor en comparación con Google Maps, se investigaron las siguientes
herramientas:

Nominatim (Geocoding)

●​ ¿Qué hace? Geocodificación y reverse geocoding sobre datos OSM.
●​ ¿Para qué la usaríamos? Para convertir direcciones a coordenadas y

obtener osm_id/osm_type.

Overpass API (POIs)

●​ ¿Qué hace? Consultas flexibles sobre el grafo OSM (puntos, vías y
relaciones) por tags (ej., shop=supermarket, brand=*).

●​ ¿Para qué la usaríamos? Para descubrir y validar sucursales por
marca/categoría en zonas específicas, como fuente adicional de POIs.

3. Dashboard y Landing

Desarrollo Web

La presencia digital de SaveApp no se limita a la aplicación móvil, requiere de una sólida
plataforma web que cumpla dos funciones críticas y distintas. Por un lado, una landing
page, que actúa como la carta de presentación del producto, enfocada en el marketing, la
adquisición de usuarios y la optimización para motores de búsqueda (SEO). Por otro lado,
un panel administrativo (dashboard) interno y seguro, que es el centro de control operativo

28

Informe de Proyecto Final

para el equipo de SaveApp. Dado que los requisitos técnicos de estos dos productos son
diametralmente opuestos (el primero demanda rendimiento extremo y visibilidad, mientras
que el segundo exige funcionalidad, gestión de datos y seguridad), se ha investigado un
amplio espectro de tecnologías de frontend, backend y servicios auxiliares para determinar
las combinaciones más adecuadas.

Librerías de UI: La Base de la Interfaz

Una librería de UI proporciona los bloques de construcción fundamentales (componentes)
para crear la interfaz con la que el usuario interactúa.

React

●​ ¿Qué es? Es una librería de JavaScript, mantenida por Meta, para construir
interfaces de usuario interactivas y dinámicas basadas en un sistema de
componentes. React gestiona cómo se ve y se actualiza la UI en respuesta a
los datos y las acciones del usuario.

●​ Ventajas y Desventajas: Su principal ventaja es su inmensa popularidad, lo
que se traduce en una comunidad masiva, una cantidad ingente de librerías,
tutoriales y una gran disponibilidad de desarrolladores. Es flexible y puede
ser integrado en casi cualquier tipo de proyecto.

●​ ¿Para qué la usaríamos? Ideal para el dashboard administrativo interno de
SaveApp. Crearíamos una aplicación de cliente (Client-Side Rendering) que
consume la API del backend para mostrar datos dinámicos, gestionar
formularios complejos y ofrecer una experiencia de usuario rica e interactiva.

Shadcn

●​ ¿Qué es? Es una colección de componentes de interfaz de usuario
construidos sobre Radix UI y estilizados con Tailwind CSS, pensada para
aplicaciones modernas en React y Next.js. No es un framework cerrado: el
código de cada componente se copia en el proyecto, lo que permite una
personalización total sin depender de una librería externa en tiempo de
ejecución.

●​ Ventajas y Desventajas: La mayor ventaja es la calidad visual y la
coherencia de diseño lista para usar, con soporte para accesibilidad y buenas
prácticas. El hecho de incorporar el código al repositorio facilita modificar
estilos, lógica o estructura sin limitaciones. Como desventaja, requiere
mantener manualmente las actualizaciones de componentes si se quieren
incorporar mejoras o correcciones del repositorio original.

●​ ¿Para qué la usaríamos? Para acelerar la creación del dashboard
administrativo, garantizando una UI consistente, moderna y accesible, con la
flexibilidad de adaptar los componentes a las necesidades específicas del
producto.

29

Informe de Proyecto Final

Meta-Frameworks: Estructura y Optimización

Los meta-frameworks se construyen sobre librerías como React para ofrecer soluciones
completas que incluyen enrutamiento, renderizado en el servidor y optimizaciones de
rendimiento "de fábrica".

Next.js (sobre React)

●​ ¿Qué es? Es el meta-framework de producción para React. Extiende sus
capacidades con funcionalidades cruciales como el renderizado del lado del
servidor (SSR), la generación de sitios estáticos (SSG), optimización de
imágenes y un sistema de enrutamiento basado en ficheros.

●​ Ventajas y Desventajas: Permite construir aplicaciones React completas y
de alto rendimiento sin tener que configurar manualmente herramientas
complejas. Su enfoque en SSR y SSG es excelente para el SEO y la
velocidad de carga inicial.

●​ ¿Para qué la usaríamos? Es la opción principal para construir la landing
page pública de SaveApp. Usaríamos su modo de generación estática (SSG)
para garantizar tiempos de carga casi instantáneos y una optimización
perfecta para los motores de búsqueda (SEO).

Astro

●​ ¿Qué es? Astro es un framework diseñado para construir sitios web rápidos
y centrados en el contenido. Su innovación es la arquitectura de "islas", que
renderiza HTML estático (cero JavaScript por defecto) y solo carga el JS de
los componentes interactivos que lo necesitan.

●​ Ventajas y Desventajas: Velocidad extrema para sitios de contenido al
minimizar el JavaScript. Es menos adecuado para aplicaciones web
altamente dinámicas como un dashboard.

●​ ¿Para qué la usaríamos? Sería una opción excepcional y altamente
especializada para construir la landing page de SaveApp, garantizando una
velocidad de carga de élite.

Herramientas de Desarrollo y Build

Estas herramientas son esenciales para el proceso de desarrollo, ya que compilan,
empaquetan y sirven el código de la aplicación.

Vite

●​ ¿Qué es? Es una herramienta de build y servidor de desarrollo moderno.
Utiliza los módulos ES nativos del navegador para ofrecer un servidor de
desarrollo extremadamente rápido y un proceso de empaquetado optimizado
para producción.

30

Informe de Proyecto Final

●​ Ventajas y Desventajas: Su principal ventaja es la velocidad y la experiencia
de desarrollo (DX) superiores. Es prácticamente instantáneo al iniciar y al
aplicar cambios (Hot Module Replacement). Es agnóstico al framework,
compatible con React, Vue, Svelte y otros.

●​ ¿Para qué la usaríamos? Sería la herramienta elegida para crear y servir
localmente nuestra aplicación de cliente de React para el dashboard. Su
velocidad acelera drásticamente el ciclo de desarrollo.

Frameworks de Backend para la Web

El backend es el motor de la aplicación: procesa la lógica de negocio, interactúa con la base
de datos y sirve los datos que consumen las interfaces de usuario. La elección de la
tecnología de backend es crítica y depende de factores como los requisitos de rendimiento,
la escala del proyecto y la experiencia del equipo de desarrollo.

Django

●​ ¿Qué es? Un framework de alto nivel que sigue la filosofía de black box. Django
proporciona una solución completa y robusta desde el primer momento, destacando
por su potente ORM (Object-Relational Mapper) y, sobre todo, por su panel de
administración autogenerado.

●​ Ventajas y Desventajas: Su principal ventaja es la velocidad de desarrollo para
aplicaciones CRUD (Crear, Leer, Actualizar, Borrar). El panel de administración es
un acelerador masivo. Por otro lado, su naturaleza monolítica y opinionada puede
hacerlo menos flexible para microservicios o arquitecturas no convencionales.

●​ ¿Para qué lo usaríamos? Es la opción ideal para generar de forma casi instantánea
un dashboard administrativo interno y funcional para SaveApp. Permite gestionar
todos los datos de la base de datos con un esfuerzo de desarrollo mínimo, ideal para
una primera versión o para herramientas internas.

FastAPI

●​ ¿Qué es? Un micro-framework moderno de Python, diseñado específicamente para
construir APIs de alto rendimiento. Utiliza características modernas del lenguaje
(como type hints) para ofrecer validación de datos, serialización y documentación de
API interactiva automática (vía Swagger UI y ReDoc).

●​ Ventajas y Desventajas: Su rendimiento es excepcional, comparable al de Node.js
o Go. La documentación automática ahorra muchísimo tiempo y mejora la
comunicación entre equipos. Al ser un micro-framework, no incluye componentes
como un ORM o un panel de admin, lo que da más flexibilidad pero requiere integrar
librerías de terceros.

●​ ¿Para qué la usaríamos? Es la elección perfecta para construir la API principal que
será consumida por el frontend y la aplicación móvil. Su velocidad y eficiencia son
clave para una experiencia de usuario fluida.

31

Informe de Proyecto Final

Node.js

●​ ¿Qué es? Es un entorno de ejecución de JavaScript del lado del servidor, construido
sobre el motor V8 de Chrome. Permite a los desarrolladores usar JavaScript para
escribir el código del backend, como APIs, interactuar con bases de datos y
gestionar la lógica de negocio.

●​ Ventajas y Desventajas: Su mayor ventaja es la posibilidad de usar JavaScript en
todo el stack (full-stack), unificando el lenguaje del frontend y el backend. Su
ecosistema, gestionado por NPM (Node Package Manager), es el más grande del
mundo. Su modelo asíncrono lo hace muy eficiente para aplicaciones que manejan
muchas conexiones simultáneas.

●​ ¿Para qué la usaríamos? Es la base sobre la que construiríamos toda la API REST
de SaveApp. Esta API sería la encargada de comunicarse con la base de datos,
procesar los datos, autenticar a los usuarios y servir toda la información que necesita
el dashboard administrativo para funcionar.

Go (Golang)

●​ ¿Qué es? Go no es un framework, sino un lenguaje con una librería estándar muy
potente que permite construir servidores web de alto rendimiento sin necesidad de
dependencias externas. Su principal fortaleza es la concurrencia, manejada a través
de goroutines.

●​ Ventajas y Desventajas: Produce un único archivo binario ejecutable sin
dependencias, lo que simplifica enormemente el despliegue (ideal para
contenedores como Docker). Ofrece un rendimiento excepcional y un consumo de
memoria muy bajo. Su ecosistema de librerías, aunque creciente, no es tan vasto
como el de Python o Node.js.

●​ ¿Para qué lo usaríamos? Go sería la opción preferida para construir microservicios
de muy alto rendimiento dentro de la arquitectura de SaveApp.

4. Bases de Datos

La naturaleza de los datos de SaveApp es inherentemente diversa. Coexisten datos
relacionales y estructurados (usuarios, tarjetas), datos semi-estructurados y flexibles (las
promociones con sus innumerables condiciones), datos geoespaciales, datos de búsqueda
de texto y archivos binarios como imágenes. Confiar en una única tecnología para todas
estas tareas sería subóptimo. Un enfoque de persistencia políglota, seleccionando la
herramienta adecuada para cada trabajo, es la estrategia más robusta.

Bases de Datos Relacionales (SQL)

Ideales para datos estructurados donde la consistencia y la integridad son la máxima
prioridad.

32

Informe de Proyecto Final

PostgreSQL

●​ ¿Qué es? Es un sistema de gestión de bases de datos objeto-relacional de
código abierto, reconocido por su robustez, cumplimiento de estándares y un
conjunto de características avanzadas.

●​ Ventajas y Desventajas Su principal fortaleza son las transacciones ACID,
que garantizan la integridad de los datos. Su extensión PostGIS lo convierte
en una base de datos geoespacial de primer nivel, y su soporte para tipos de
datos complejos como JSONB es excelente.

●​ ¿Para qué la usaríamos? Sería la base de datos para los datos más
críticos: perfiles de usuario, credenciales (hasheadas), tarjetas registradas y
registros de auditoría. Además, con PostGIS, la usaríamos para almacenar la
ubicación de los comercios y potenciar toda la funcionalidad de
geolocalización.

MySQL / MariaDB

●​ ¿Qué es? MySQL es la base de datos relacional de código abierto más
popular del mundo, conocida por su fiabilidad y facilidad de uso. MariaDB es
su "fork" (derivado) creado por la comunidad, que mantiene una alta
compatibilidad y a menudo introduce características de vanguardia.

●​ Ventajas y Desventajas Su ventaja es su enorme popularidad, lo que se
traduce en una vasta comunidad, documentación extensa y un gran soporte
en casi todas las plataformas de hosting. Es reconocida por su excelente
rendimiento en cargas de trabajo intensivas en lectura. Puede ser menos rica
en funciones que PostgreSQL para consultas muy complejas.

●​ ¿Para qué la usaríamos? Sería una alternativa directa y muy sólida a
PostgreSQL para almacenar los datos estructurados del núcleo de la
aplicación (usuarios, tarjetas, etc.). La elección entre MySQL y PostgreSQL a
menudo se reduce a la familiaridad del equipo de desarrollo y a necesidades
de características específicas.

Bases de Datos No Relacionales (NoSQL)

Diseñadas para la flexibilidad, la escalabilidad y para manejar datos que no se ajustan bien
a un esquema de tablas y filas.

MongoDB

●​ ¿Qué es? Es una base de datos NoSQL líder, orientada a documentos, que
almacena los datos en un formato flexible similar a JSON llamado BSON.

●​ Ventajas y Desventajas Su ventaja clave es la flexibilidad de esquema.
Permite almacenar datos cuya estructura es variable y difícil de predecir,

33

Informe de Proyecto Final

como las promociones. Esto simplifica enormemente el desarrollo y la
evolución de la aplicación.

●​ ¿Para qué la usaríamos? Sería la base de datos elegida para almacenar
toda la información de las promociones. Cada promoción, con sus
condiciones únicas y variables, sería un único documento, lo que nos
permitiría adaptarnos a la diversidad de ofertas del mercado con gran
agilidad.

Firebase Firestore

●​ ¿Qué es? Es una base de datos de documentos NoSQL, flexible y escalable,
ofrecida por Google, cuya característica más destacada es su capacidad de
sincronización de datos en tiempo real con los clientes conectados.

●​ Ventajas y Desventajas Su gran ventaja es la capacidad de propagar
cambios en la base de datos a las aplicaciones casi instantáneamente. Sus
capacidades de consulta son más limitadas, pero su facilidad de integración y
naturaleza en tiempo real son un gran plus.

●​ ¿Para qué la usaríamos? La aprovecharíamos para guardar metadata y
configuraciones de los usuarios, además de almacenar los UID de los
usuarios de firebase para poder enviar las push notifications.

Redis

●​ ¿Qué es? Redis es un almacén de estructuras de datos en memoria,
extremadamente rápido, que se utiliza principalmente como base de datos,
caché y agente de mensajes.

●​ Ventajas y Desventajas Su ventaja es su velocidad vertiginosa, ya que
opera directamente sobre la RAM. Esto permite responder a consultas en
milisegundos, reduciendo la carga sobre las bases de datos principales y
mejorando la percepción de velocidad de la app.

●​ ¿Para qué la usaríamos? Desempeñaría el rol crucial de una capa de
caché. Almacenaríamos en Redis los resultados de consultas frecuentes o
costosas (ej: "top 10 de promociones en un barrio específico") para servirlos
de forma casi instantánea, mejorando la experiencia del usuario y la
escalabilidad del sistema.

5. ETL y Chatbot

Extracción de Datos y Automatización (Web Scraping)

El corazón operativo de SaveApp es su capacidad para obtener y procesar información de
un ecosistema digital no diseñado para la interoperabilidad. La estrategia de web scraping

34

Informe de Proyecto Final

debe combinar herramientas resilientes y escalables para emular la interacción humana de
manera convincente.

BeautifulSoup

●​ ¿Qué es? BeautifulSoup es una librería de Python diseñada para el análisis
sintáctico (parsing) de documentos HTML y XML. Su función principal es transformar
el código fuente estático de una página web en una estructura de datos organizada
(un árbol de objetos), permitiendo a los desarrolladores navegar, buscar y extraer
información específica de manera programática.

●​ Ventajas y Desventajas La ventaja fundamental de BeautifulSoup radica en su
simplicidad y curva de aprendizaje casi plana, con una API legible, tolerante a HTML
imperfecto y muy eficaz para navegar árboles DOM y localizar patrones repetitivos.
Su única desventaja relevante es que no soporta XPath de forma nativa, trabaja con
selectores CSS y búsquedas por atributos.

●​ ¿Para qué la usaríamos? La usaríamos en los casos donde las promociones estén
publicadas directamente en el HTML sin un backend estructurado ni endpoints. En
ese escenario, BeautifulSoup permite extraer con rapidez y fiabilidad el contenido del
DOM (listas, tablas, tarjetas de oferta y metadatos).

Scrapy

●​ ¿Qué es? Scrapy no es una simple librería, sino un completo framework de crawling
y scraping de alto nivel. Construido sobre una arquitectura asíncrona, está diseñado
para gestionar múltiples peticiones de red de forma concurrente, lo que le confiere
una velocidad y eficiencia muy superiores para la extracción masiva de datos.

●​ Ventajas y Desventajas Su principal ventaja es la robustez y escalabilidad. Permite
orquestar todo el proceso de scraping, definir lógicas de extracción específicas por
sitio ("spiders"), manejar errores de red, gestionar sesiones y procesar los datos
extraídos en un flujo ordenado ("pipeline"). Su desventaja es una curva de
aprendizaje más pronunciada que herramientas más simples, aunque la inversión se
traduce en un sistema más mantenible.

●​ ¿Para qué la usaríamos? Scrapy actuaría como el sistema nervioso central de la
recolección de información. Definiríamos "spiders" para cada portal bancario (ej.
GaliciaSpider, NaranjaXSpider), que navegarían de forma autónoma para recolectar
las promociones, constituyendo la base del sistema de extracción de datos a gran
escala.

Playwright (o Selenium)

●​ ¿Qué es? Playwright es una moderna librería de automatización de navegadores
que ofrece control programático sobre navegadores completos como Chromium,
Firefox y WebKit. Su función es emular de manera fidedigna la interacción de un

35

Informe de Proyecto Final

usuario humano con un sitio web, pudiendo ejecutarse en modo "headless" (sin
interfaz gráfica) para su despliegue en servidores.

●​ Ventajas y Desventajas La ventaja crítica de Playwright es su capacidad para
resolver el problema del contenido dinámico, ya que procesa el JavaScript de las
páginas. Su gran desventaja es que consume significativamente más recursos de
CPU y memoria y es más lento que las peticiones directas, lo que se traduce en
mayores costos de infraestructura.

●​ ¿Para qué la usaríamos? Playwright es la pieza tecnológica clave para extraer
datos de los portales bancarios modernos. Esta herramienta podría usarse cuando
las ofertas se encuentran en HTML y el portal bancario genera ese contenido de
manera dinámica, por otro lado, es muy útil frente a barreras anti-scrapers en donde
se necesita sobrepasarlas mediante un navegador automatizado.

Agentes de IA para Web Scraping (Emergente)

●​ ¿Qué es? Este enfoque representa un cambio de paradigma que utiliza un LLM, a
menudo con capacidades de visión, para interpretar una página web de forma
contextual. En lugar de buscar elementos por su código (selectores CSS o XPath), el
agente revisa el dominio y entiende semánticamente dónde está la información
relevante.

●​ Ventajas y Desventajas A largo plazo, su gran ventaja es la resiliencia: si un sitio
web cambia su diseño, el agente de IA podría adaptarse sin necesidad de reescribir
el código, reduciendo costos de mantenimiento. Sus desventajas actuales son el alto
costo por cada análisis, la alta latencia y una fiabilidad que aún no es comparable a
los métodos tradicionales.

●​ ¿Para qué la usaríamos? Actualmente, no es una solución viable para el producto
inicial debido a sus limitaciones y costos. Sin embargo, la consideramos una línea de
investigación y desarrollo futuro para SaveApp, con el potencial de automatizar y
robustecer el mantenimiento de los scrapers a largo plazo.

Procesamiento de Lenguaje Natural (NLP) y Modelos de Lenguaje

Las descripciones de las promociones están redactadas en lenguaje natural denso y
ambiguo. Es crucial extraer y estructurar sus reglas de negocio con precisión para que el
sistema sea funcional.

Expresiones Regulares

●​ ¿Qué es? Las Expresiones Regulares (Regex) son un lenguaje formal de patrones
para buscar y manipular texto.

●​ Ventajas y Desventajas Son computacionalmente muy baratas, rápidas y eficientes
para extraer entidades predecibles y bien definidas (porcentajes, montos, fechas).
Su limitación fundamental es su fragilidad y falta de comprensión contextual, no

36

Informe de Proyecto Final

pueden discernir el significado de un monto (si es un tope, un mínimo, etc.) ni
manejar la variabilidad del lenguaje.

●​ ¿Para qué la usaríamos? Servirían como una capa de pre-procesamiento rápida y
eficiente. Las utilizaríamos para una primera pasada de extracción de datos
estructurados y fáciles de identificar, antes de pasar el texto a modelos más
complejos para su interpretación semántica.

Modelos de Lenguaje (LLMs)

●​ ¿Qué es? Los LLMs han desarrollado una capacidad sin precedentes para
comprender el contexto, la semántica y la intención detrás del lenguaje natural. La
interacción se realiza a través de una API, enviando instrucciones precisas
(prompts).

●​ Ventajas y Desventajas Su principal ventaja es su inmensa flexibilidad para
manejar la variabilidad y la jerga del lenguaje de las promociones, permitiendo una
extracción de datos estructurados muy precisa. Las desventajas son el costo
asociado al uso de sus APIs (se paga por token procesado) y el riesgo de
"alucinaciones" (datos incorrectos), lo que requiere una capa de validación posterior.

●​ ¿Para qué la usaríamos? Los LLMs serían el cerebro encargado de interpretar las
condiciones complejas de cada promoción. Les enviaríamos el texto de una oferta
con un prompt detallado para que devuelvan un objeto JSON estructurado con todos
sus atributos (tipo de beneficio, valor, tope, días, bancos, etc.), transformando el
texto no estructurado en datos útiles para la aplicación.

Embeddings y Bases de Datos Vectoriales

●​ ¿Qué es? Un modelo de "embeddings" convierte un fragmento de texto en un vector
numérico que representa su significado semántico. Una base de datos vectorial es
un sistema optimizado para almacenar estos vectores y realizar búsquedas de
similitud ultrarrápidas, encontrando textos con significados parecidos en lugar de
solo palabras clave.

●​ Ventajas y Desventajas La ventaja es que habilita funcionalidades de búsqueda y
recomendación mucho más inteligentes y naturales para el usuario. La principal
desventaja es que añade una capa de complejidad a la arquitectura de la aplicación
y a los costos operativos.

●​ ¿Para qué la usaríamos? Esta tecnología potenciaría funcionalidades de alto valor.
Nos permitiría implementar una búsqueda donde un usuario pueda escribir "salidas
de fin de semana" y encontrar promociones en cines y restaurantes, o potenciar un
motor que recomiende ofertas similares a las que el usuario ha guardado, mejorando
drásticamente el descubrimiento y la experiencia.

37

Informe de Proyecto Final

MCP Servers

●​ ¿Qué es? Son servicios que actúan como intermediarios entre un modelo de
lenguaje y sistemas externos, permitiendo que el modelo acceda a datos,
herramientas o funciones específicas de manera controlada y estructurada. Operan
mediante un protocolo estandarizado que define cómo el modelo solicita información
o ejecuta acciones fuera de su propio contexto.

●​ Ventajas y Desventajas: Su principal ventaja es que amplían las capacidades del
modelo sin comprometer la seguridad ni exponer directamente la infraestructura
interna, ya que las interacciones se canalizan a través de endpoints controlados.
Además, permiten reutilizar funciones y datos en diferentes flujos de trabajo de
forma consistente. La desventaja es que requieren un diseño cuidadoso del
protocolo y las funciones expuestas, así como una infraestructura adicional para
mantener la disponibilidad y seguridad del servicio.

●​ ¿Para qué la usaríamos? Los MCP Servers serían el puente entre los LLMs y los
datos operativos de SaveApp. Los usaríamos para que el modelo consulte catálogos
actualizados de bancos, tarjetas y comercios; valide umbrales o formatos; y ejecute
funciones de negocio específicas sin exponer directamente la base de datos o la
lógica interna del sistema.

Técnicas de Prompting

Esta sección presenta las técnicas de prompting que guiarán la interacción con modelos de
lenguaje en SaveApp. Su correcta aplicación impacta directamente en la precisión y
consistencia de la extracción y normalización de promociones, en el control de calidad y la
reproducibilidad de resultados, así como en los costos y la latencia operativa del sistema.

Estructuración con Markdown

●​ ¿Qué es? Organización del prompt en secciones nítidas (rol, objetivo, datos, reglas,
formato) y delimitación explícita del texto a procesar.​

●​ Ventajas y desventajas. Esta técnica reduce ambigüedades, evita la deriva de
instrucciones y facilita la auditoría entre equipos, ya que todos leen y versionan la
misma estructura. A cambio, exige disciplina para mantener convenciones
coherentes y actualizar las reglas cuando cambian las políticas.​

●​ ¿Para qué la usaríamos? Para estructurar los prompts del ETL jerárquicamente.

One-shot y Few-shot

●​ ¿Qué es? Inclusión de uno o pocos casos representativos para orientar formato,
criterios y nivel de detalle sin necesidad de entrenar el modelo.​

●​ Ventajas y desventajas. Alinea rápidamente las salidas con nuestro esquema y
estilo, y evita el costo y complejidad de un fine-tuning inicial; sin embargo, puede

38

Informe de Proyecto Final

sesgar si los ejemplos no cubren la diversidad real del dominio y agrega consumo de
contexto.​

●​ ¿Para qué la usaríamos? Para asegurar que las promociones salgan con nuestro
JSON canónico, enseñar matices (como distinguir “descuento” vs. “reintegro”),
calibrar el tono de textos cortos y guiar normalizaciones de entidades (bancos,
tarjetas, categorías) de forma económica.​

Razonamiento (Chain-of-Thought)

●​ ¿Qué es? Inducir razonamiento interno paso a paso, limitando la salida a la
respuesta final o a una justificación breve y controlada.​

●​ Ventajas y desventajas. Mejora la exactitud en tareas con múltiples condiciones y
fechas, reduce confusiones entre conceptos cercanos y eleva la coherencia global;
por contra, tiende a aumentar latencia y costo, y requiere redactar instrucciones
cuidadosas para evitar exponer trazas sensibles en la salida.​

●​ ¿Para qué la usaríamos? Para interpretar T&C complejas, validar coherencia de
vigencias, resolver conflictos de enunciados, decidir si una promo aplica a una
tarjeta concreta y determinar cuándo corresponde abstenerse o marcar campos
como desconocidos.​

LLM as a Judge

●​ ¿Qué es? Uso de un LLM como evaluador que puntúa o compara salidas según una
rúbrica de calidad definida (exactitud, consistencia con evidencia, formato).​

●​ Ventajas y desventajas. Permite escalar control de calidad sin revisar todo a mano
y habilita experimentos A/B entre prompts o variantes, pero puede heredar sesgos
del modelo evaluador y exige rúbricas claras, umbrales y conjuntos de referencia;
además añade un paso extra de cómputo.​

●​ ¿Para qué la usaríamos? Como compuerta de calidad antes de publicar
promociones, para elegir la mejor extracción entre varias candidatas, detectar
campos dudosos que requieren revisión humana y monitorear degradaciones
cuando cambian los sitios.​

Structured Output

●​ ¿Qué es? Forzar que la salida cumpla un esquema estructurado (tipos, rangos,
fechas ISO) y evitar texto libre.​

●​ Ventajas y desventajas. Facilita el parseo y la validación automática en el backend,
permite reintentos controlados si el esquema no valida y mejora la auditabilidad por

39

Informe de Proyecto Final

campo; la contracara es que esquemas demasiado rígidos pueden romper ante
casos reales limítrofes y obligan a gestionar explícitamente datos faltantes o
inciertos.​

●​ ¿Para qué la usaríamos? Para la ingesta directa de promociones al pipeline, el
control de versiones de atributos.​

Plantillas de system prompt dinámicas

●​ ¿Qué es? Técnica para definir system prompts con variables que se inyectan
dinámicamente en el pipeline o workflow, según el contexto o la tarea.

●​ Ventajas y desventajas. Permite personalizar las instrucciones en tiempo de
ejecución, limitar el espacio de respuesta del modelo y reutilizar la misma plantilla
para distintos escenarios. Sin embargo, requiere controlar la correcta inyección de
variables y validar que el LLM interprete las restricciones según lo esperado.

●​ ¿Para qué la usaríamos? Para ajustar el comportamiento del modelo en función de
datos o condiciones específicas (restringir la selección de tarjetas, filtrar catálogos o
acotar umbrales) sin necesidad de redefinir manualmente el prompt base.​

Tool / Function Calling

●​ ¿Qué es? Mecanismo que permite a un LLM invocar funciones predefinidas (p. ej.,
normalizar entidades, validar fechas, consultar catálogos) en lugar de responder con
texto libre, integrando el modelo directamente con la lógica de negocio.

●​ Ventajas y desventajas. Ofrece control preciso sobre las respuestas, reduce la
necesidad de interpretar o corregir salidas del modelo y facilita flujos
conversacionales estructurados (validar → consultar → responder) sin riesgo de
formatos inválidos. Como contrapartida, exige soporte en la plataforma del chatbot,
un diseño claro de funciones y una gestión cuidadosa de errores y tiempos de
respuesta.

●​ ¿Para qué la usaríamos? En el chatbot, para que el modelo pueda, durante una
conversación, consultar catálogos vivos de bancos, tarjetas o categorías, validar
rangos y formatos, acceder a índices para deduplicación o registrar métricas y
decisiones en tiempo real.​

Selección semántica de contexto (RAG ligero)

●​ ¿Qué es? Recuperar solo fragmentos relevantes por similitud semántica y usarlos
como contexto, evitando enviar documentos completos.​

●​ Ventajas y desventajas. Disminuye costo y latencia, reduce ruido y mejora
precisión al focalizar la información, y facilita auditoría de procedencia; sin embargo,

40

Informe de Proyecto Final

depende de la calidad del recuperador y del índice, que requieren mantenimiento y
umbrales bien ajustados.​

●​ ¿Para qué la usaríamos? Para que el chatbot pueda acceder a información de
ofertas, términos y condiciones, políticas, etc.​

Calibración de decodificación

●​ ¿Qué es? Ajuste de temperatura, top-p, longitud máxima, penalizaciones y semillas
para controlar variabilidad, costo y reproducibilidad.​

●​ Ventajas y desventajas. Permite extracciones deterministas cuando la estabilidad
es crítica y aporta variedad controlada en textos orientados a UX, además de
optimizar el gasto por tarea, la desventaja es que requiere tuning por dominio y
puede necesitar revisiones cuando cambian los modelos base.​

●​ ¿Para qué la usaríamos? Para mantener la consistencia en la extracción y
normalización de datos, y asegurar que se cumplan los tiempos y costos incluso en
picos de tráfico.

LLM Gateways

Esta sección reúne pasarelas multi-proveedor (proxies) que unifican el acceso a modelos
(OpenAI, Anthropic, Google, Meta, etc.) detrás de un endpoint único, con observabilidad,
ruteo/fallback, rate limiting, caché y control de costos. Reducen fricción para cambiar de
modelo y estandarizan métricas y políticas.

Vercel AI Gateway

●​ ¿Qué es? Pasarela AI/LLM que se interpone entre tu app y múltiples proveedores
para unificar claves, modelos y políticas (cuotas, límites, cacheo, retrys) con
observabilidad y analítica de tokens/latencias.

●​ Ventajas y Desventajas: la ventaja radica en un endpoint único multi-proveedor,
ruteo/fallback, rate limits y caps por ruta/modelo, caché para prompts estables, panel
de métricas integrado, DX sólida (middlewares, SDKs). Tiene como desventaja otro
salto de red (compliance/latencia), menos control que un gateway self-hosted, y
ligero lock-in al ecosistema Vercel para algunas integraciones avanzadas.

●​ ¿Para qué la usaríamos? Centralizar claves/cuotas, aplicar políticas de
costo/latencia, habilitar fallback entre proveedores y bajar costos con caché en
prompts determinísticos (por ejemplo, validaciones o extractores estables).

OpenRouter

●​ ¿Qué es? API unificada compatible con OpenAI para decenas/cientos de modelos.
Permite cambiar de modelo vía model sin tocar SDKs, con ruteo/fallback, facturación
centralizada y BYOK en varios casos.

41

Informe de Proyecto Final

●​ Ventajas y Desventajas: tiene un catálogo amplio, permite un cambio rápido de
modelos, posee precios competitivos, endpoint simple y métricas razonables sin
armar infraestructura propia. Su contra radica en la dependencia de un tercero para
facturación y límites, variabilidad entre proveedores detrás del mismo endpoint y
menos controles enterprise que opciones self-hosted.

●​ ¿Para qué la usaríamos? Experimentación/A-B entre modelos sin reescribir código,
fallback automático cuando un vendor cae o rate-limitea, y cobertura rápida de
nuevos modelos/regiones.

Prompt Management Tools

Esta sección reúne herramientas para versionar, auditar y optimizar prompts, trazas y
costos en flujos con LLMs. Su adopción mejora la reproducibilidad, el control de calidad y la
velocidad de iteración del equipo.

PromptLayer

●​ ¿Qué es? Plataforma para versionar prompts y registrar ejecuciones (prompt,
respuesta, latencia, costo) con integración directa vía SDK o middleware.

●​ Ventajas y Desventajas: permite el versionado de prompts con histórico,
comparaciones A/B simples, registro de runs y métricas operativas, integración
rápida. Como desventaja tiene que el foco principal es en el logging/versionado
(menos énfasis en experimentación avanzada y evaluaciones automáticas).

●​ ¿Para qué la usaríamos? Para mantener un historial auditable de los prompts del
Crawler/ETL y del chatbot, comparar variantes y revertir ante regresiones en
extracción o clasificación.

Helicone

●​ ¿Qué es? Capa de observabilidad y control de costos que actúa como proxy.
Funciona tanto como LLM gateway ligero (proxy compatible con múltiples
proveedores) como Prompt Management Tool orientada a tracing, etiquetado y
sanitización de PII.

●​ Ventajas y Desventajas: ofrece métricas de uso y costo por ruta/usuario,
dashboards en tiempo real, etiquetado de requests, sampling, redacción de PII,
cache y rate limits básicos; se integra rápido y permite exportar datos para análisis.
Como desventaja tiene que las optimizaciones avanzadas requieren
configuración/tuning, y no es un router inteligente “full” (ruteo/fallback menos
sofisticado que gateways dedicados).

●​ ¿Para qué la usaríamos? Para monitorear costo/latencia de pipelines (extracción,
validación, Judge), detectar picos, aplicar límites y activar caché en prompts
costosos y estables; además, como proxy unificador sencillo cuando queremos
centralizar logging y controles sobre varios proveedores.

42

Informe de Proyecto Final

Langfuse

●​ ¿Qué es? Plataforma de trazabilidad (tracing) y evaluación para LLMs con suites de
experimentación, datasets y scoring.

●​ Ventajas y Desventajas: permite realizar trazas detalladas paso a paso (incluye
tool-calls), experimentos A/B, datasets de referencia, métricas y evaluaciones
automáticas, gestión de prompts con versiones. Como contra posee una curva de
adopción mayor (definir rúbricas/datasets) y requiere disciplina de etiquetado.

●​ ¿Para qué la usaríamos? Como “centro de control” del pipeline semántico:
comparar prompts, medir exactitud de campos clave (tope, vigencia, tarjetas),
monitorear degradaciones cuando cambian los sitios y aprobar releases del ETL con
evidencia.

6. Cloud

Plataformas de Despliegue Cloud

Esta sección detalla las plataformas donde se alojará y ejecutará toda la infraestructura de
SaveApp. La elección impacta directamente en la velocidad de desarrollo, la escalabilidad y
los costos operativos.

Railway

●​ ¿Qué es? Railway es una moderna Plataforma como Servicio (PaaS) diseñada con
un enfoque radical en la simplicidad. Permite desplegar una aplicación completa
directamente desde un repositorio de código (ej. GitHub), aprovisionando y
conectando automáticamente todos los servicios necesarios, como bases de datos,
cachés y backends.

●​ Ventajas y Desventajas: Su principal ventaja es la extrema facilidad de uso y la
velocidad de despliegue, lo que permite pasar del código a una aplicación funcional
en minutos. La desventaja es que ofrece menos control granular sobre la
infraestructura en comparación con un proveedor IaaS y es más costoso.

●​ ¿Para qué la usaríamos? Sería un candidato ideal para desplegar el MVP de
SaveApp. Nos permitiría lanzar el backend, la base de datos y la caché como
servicios interconectados con un mínimo esfuerzo de configuración. Esto
maximizaría la velocidad de entrega al permitir que el equipo se enfoque
exclusivamente en el desarrollo de funcionalidades.

Vercel

●​ ¿Qué es? Vercel es una Plataforma como Servicio (PaaS) altamente especializada,
creada por el equipo detrás de Next.js. Está optimizada para el despliegue de
frontends modernos y funciones serverless, con un enfoque principal en el
rendimiento web y la experiencia del desarrollador.

43

Informe de Proyecto Final

●​ Ventajas y Desventajas: Su integración con Next.js es inmejorable, ofreciendo
optimizaciones automáticas de rendimiento y una red de distribución de contenido
(CDN) global que hace que los sitios web sean extremadamente rápidos. Su función
de "Preview Deployments" para cada cambio de código facilita la colaboración. Su
desventaja principal es su alto costo.

●​ ¿Para qué la usaríamos? Sería la elección predilecta y especializada para
desplegar la landing page y el dashboard administrativo. Alojaríamos el frontend en
Vercel para garantizar la máxima velocidad de carga, mientras que los servicios de
backend (API, scrapers, base de datos) se alojarían en otra plataforma como
Railway o AWS.

Amazon Web Services (AWS)

●​ ¿Qué es? AWS es el líder mundial en Infraestructura como Servicio (IaaS). Ofrece
un catálogo inmenso de más de 200 servicios en la nube, que funcionan como
bloques de construcción para crear cualquier tipo de arquitectura, desde servidores
virtuales (EC2) y bases de datos gestionadas (RDS) hasta servicios de machine
learning.

●​ Ventajas y Desventajas: Sus ventajas son la enorme variedad de servicios, su
fiabilidad y escalabilidad probadas, y ser el estándar de la industria. La principal
desventaja es su complejidad; la gestión de la infraestructura y el control de costos
requieren un conocimiento técnico especializado (DevOps) y pueden ser
abrumadores para un equipo pequeño.

●​ ¿Para qué la usaríamos? Adoptaríamos AWS en una etapa de madurez de
SaveApp, cuando necesitemos un control total sobre la infraestructura para optimizar
costos y rendimiento a gran escala. Nos permitiría diseñar una arquitectura a
medida, pero no sería la opción para el MVP debido a su alta sobrecarga operativa
inicial.

Google Cloud Platform (GCP)

●​ ¿Qué es? GCP es la plataforma de nube de Google y uno de los principales
competidores de AWS. Ofrece un conjunto completo de servicios de IaaS y PaaS, y
es particularmente reconocida por su excelencia en áreas como el análisis de datos,
el machine learning (Vertex AI) y la orquestación de contenedores con Kubernetes
(GKE).

●​ Ventajas y Desventajas: Su gran ventaja es su profunda integración con Firebase,
lo que simplifica enormemente el desarrollo de la aplicación móvil y el backend si se
elige ese ecosistema. Además, GCP ofrece una muy buena capa gratuita y créditos
iniciales, permitiendo operar con costos muy bajos al principio. Como desventaja,
aunque es un jugador masivo, su catálogo de servicios y su cuota de mercado global
son menores que los de AWS.

44

Informe de Proyecto Final

●​ ¿Para qué la usaríamos? Al igual que AWS, GCP sería una opción para una fase
de crecimiento posterior. Podríamos elegirla específicamente si quisiéramos
aprovechar sus potentes herramientas de IA para mejorar el procesamiento de las
promociones. La decisión entre GCP y AWS dependería de las necesidades
específicas del proyecto y la experiencia del equipo técnico.

Microsoft Azure

●​ ¿Qué es? Microsoft Azure es la plataforma de computación en la nube de Microsoft,
y uno de los tres gigantes del mercado junto con AWS y GCP. Ofrece un catálogo
extremadamente amplio de servicios que cubren IaaS, PaaS y SaaS, y se destaca
por su fuerte posicionamiento en el mercado empresarial y su integración nativa con
el ecosistema de desarrollo y productividad de Microsoft.

●​ Ventajas y Desventajas: Su principal ventaja es la integración profunda con
herramientas como Azure DevOps y Active Directory, lo que la convierte en una
opción natural para equipos que ya operan dentro del ecosistema de Microsoft. Es
particularmente fuerte en sus ofertas de Plataforma como Servicio (PaaS) y es el
proveedor exclusivo de los servicios de OpenAI (Azure OpenAI Service), lo que le da
una ventaja estratégica para aplicaciones de IA generativa. Como desventaja, sigue
siendo de Microsoft.

●​ ¿Para qué la usaríamos? Azure sería un contendiente principal para alojar toda la
infraestructura de SaveApp. La elección sería especialmente estratégica si el equipo
opta por Azure DevOps para la gestión del ciclo de vida del desarrollo, creando un
flujo de trabajo altamente unificado. Además, podríamos utilizar el Azure OpenAI
Service para acceder a los modelos de lenguaje de OpenAI (como GPT-4) de una
manera segura y optimizada para empresas, potenciando nuestro sistema de
extracción de datos de promociones.

MongoDB Atlas

●​ ¿Qué es? MongoDB Atlas es la versión Database-as-a-Service (DBaaS) totalmente
gestionada de MongoDB, disponible en AWS, GCP y Azure. Ofrece escalado
automático, backups, alta disponibilidad y herramientas integradas (geoespacial,
full-text, change streams, triggers y funciones) sin tener que administrar servidores.

●​ Ventajas y Desventajas: simplifica la operación (backups/monitoring/replicas),
índice geoespacial nativo para consultas por cercanía, change streams para
reaccionar a cambios en tiempo real (notificaciones, pipelines), multi-cloud (reduce
lock-in al permitir despliegue en distintos proveedores), cifrado y controles de acceso
empresariales, y capa gratuita para MVP. Como desventaja puede tener costo
creciente a gran escala, y cierto lock-in funcional si se adoptan features propietarias
(Atlas Search, Triggers/Functions). Además, posibles costos de egreso de red si se
combina con servicios en otro proveedor.

●​ ¿Para qué la usaríamos? En MongoDB Atlas almacenaríamos usuarios, tarjetas,
promociones, comercios y eventos de uso; habilitaríamos consultas geoespaciales
por proximidad mediante índices 2dsphere para resolver “beneficios cerca mío”;

45

Informe de Proyecto Final

aprovecharíamos change streams para disparar actualizaciones del feed y las
recomendaciones cuando el Crawler ingrese o expire promociones; utilizaríamos
triggers para normalización liviana o para enviar webhooks (por ejemplo, invalidar
caché); opcionalmente implementaríamos Atlas Search para la búsqueda rápida de
comercios y marcas; y, cuando sea necesario reducir latencia y aumentar resiliencia,
desplegaríamos en configuración multi-región.

Terraform (Infrastructure as Code)

●​ ¿Qué es? Terraform es una herramienta de Infraestructura como Código (IaC) que
permite definir la infraestructura de forma declarativa y reproducirla de manera
consistente mediante los comandos plan y apply. Utiliza providers (GCP, AWS,
Kubernetes, Vercel, etc.) y mantiene un estado (state) para identificar lo existente y
determinar los cambios necesarios.

●​ Ventajas y Desventajas: En cuanto a ventajas, ofrece reproducibilidad, versionado
y revisión por PR, modularidad mediante módulos reutilizables, soporte multi-cloud,
detección de drift, etiquetado para control de costos y entornos aislados
(dev/stg/prod). Por el lado de las desventajas, exige gestionar el remote state y los
bloqueos, tiene una curva de aprendizaje considerable, arrastra particularidades
según cada provider y requiere un manejo cuidadoso de secretos y permisos en CI.

●​ ¿Para qué la usaríamos? La utilizaríamos para evitar configurar manualmente la
infraestructura en la nube al realizar cambios hacia otra cuenta. Además, facilita el
despliegue del flujo de trabajo para la obtención de ofertas, ya que el sistema de
crawlers es dinámico y evoluciona con el tiempo.

Almacenamiento de Archivos

Para archivos no estructurados como imágenes, logos o documentos, se utilizan sistemas
de almacenamiento de objetos, diseñados para la durabilidad, disponibilidad y escalabilidad
masiva.

Amazon S3 (Simple Storage Service)

●​ ¿Qué es? Es el servicio de almacenamiento de objetos de AWS y el estándar de
facto de la industria. Permite almacenar y recuperar cualquier cantidad de datos
desde cualquier lugar.

●​ Ventajas y Desventajas Es increíblemente duradero, escalable hasta el infinito y
muy rentable para el almacenamiento. Se integra perfectamente con el vasto
ecosistema de AWS. Como desventaja, la configuración de permisos puede ser
compleja y los costos por transferencia de datos (egress) deben ser considerados.

●​ ¿Para qué la usaríamos? Sería el repositorio principal para todos los archivos
binarios de SaveApp. Aquí guardaríamos los logos de los comercios, las imágenes
de las promociones y los avatares de los usuarios. En nuestra base de datos
principal solo guardaríamos la URL que apunta al archivo en S3.

46

Informe de Proyecto Final

Google Cloud Storage

●​ ¿Qué es? Es la solución de almacenamiento de objetos de Google Cloud Platform,
un competidor directo de Amazon S3 que ofrece funcionalidades y niveles de
servicio equivalentes.

●​ Ventajas y Desventajas Se integra perfectamente con el ecosistema de GCP y es
conocido por su alto rendimiento y una estructura de precios a menudo considerada
más simple. Su ecosistema de herramientas de terceros es amplio, aunque no tan
vasto como el de S3.

●​ ¿Para qué la usaríamos? Cumpliría exactamente el mismo rol que Amazon S3. La
elección entre ambos dependería del proveedor de nube principal que elijamos para
el resto de nuestra infraestructura (AWS o GCP), para maximizar la sinergia y
minimizar la latencia y los costos de transferencia de datos.

Contenerización y Orquestación

Esta sección se enfoca en las tecnologías para empaquetar y gestionar nuestra aplicación
como unidades estandarizadas, lo que garantiza la consistencia y facilita la escalabilidad.

Contenerización (Docker)

●​ ¿Qué es? Docker es una plataforma que permite empaquetar una aplicación y todas
sus dependencias en una unidad estandarizada y portable llamada "contenedor",
garantizando que se ejecute de la misma manera en cualquier entorno.

●​ Ventajas y Desventajas Su principal ventaja es la consistencia y portabilidad del
software, eliminando el problema de "en mi máquina funciona". Simplifica
enormemente el despliegue y la creación de entornos de desarrollo locales idénticos
a producción.

●​ ¿Para qué la usaríamos? Usaríamos Docker para empaquetar cada uno de los
microservicios de SaveApp (la API, los scrapers, el procesador de NLP). Esto nos
permitiría gestionar, desplegar y escalar cada pieza del sistema de forma aislada y
fiable.

Orquestación de Contenedores (Kubernetes)

●​ ¿Qué es? Kubernetes (K8s) es un sistema de orquestación de código abierto que
automatiza el despliegue, el escalado y la gestión de aplicaciones en contenedores a
gran escala.

●​ Ventajas y Desventajas Es el estándar de facto para aplicaciones de alta
disponibilidad, ofreciendo auto-reparación y escalado automático. Sin embargo, su
curva de aprendizaje es muy pronunciada y su gestión añade una sobrecarga
operativa significativa.

47

Informe de Proyecto Final

●​ ¿Para qué la usaríamos? Su adopción sería una consideración estratégica para

una fase de crecimiento, cuando la gestión manual de los contenedores se vuelva
inviable.

7. CI/CD

La Integración y Entrega Continua (CI/CD) es una filosofía y un conjunto de herramientas
que automatizan el ciclo de vida del desarrollo. Permiten compilar, probar y desplegar el
código de forma automática, aumentando la velocidad y reduciendo los errores.

GitHub Actions

●​ ¿Qué es? Es la plataforma de CI/CD nativa e integrada directamente en GitHub.
Permite automatizar flujos de trabajo (workflows) en respuesta a eventos del
repositorio, como un push a una rama o la creación de un pull request.

●​ Ventajas y Desventajas Su ventaja principal es la integración perfecta con el código
fuente, sin necesidad de una herramienta externa. Ofrece un generoso nivel gratuito
y un enorme marketplace de acciones pre-construidas. Su desventaja es que está
intrínsecamente ligado a GitHub y que el contexto es propio del repositorio por lo
que no permite pipelines complejos que integren distintos repositorios.

●​ ¿Para qué la usaríamos? Si el código de SaveApp se aloja en GitHub, esta sería
nuestra opción por defecto. La usaríamos para ejecutar pruebas automáticamente
en cada pull request y para desplegar el backend y el frontend a sus respectivas
plataformas cada vez que se fusione código a la rama principal.

GitLab CI/CD

●​ ¿Qué es? Es la solución de CI/CD integrada en la plataforma GitLab. Es conocida
por ser una herramienta "todo en uno" que abarca el ciclo de vida completo de
DevOps, desde la gestión del código hasta el monitoreo.

●​ Ventajas y Desventajas La ventaja es tener una única plataforma unificada para
todo el proceso, con una sintaxis de pipeline muy potente y configurable. Permite el
uso de "runners" auto-hospedados para un mayor control. Su principal desventaja es
que tiene más sentido si todo el proyecto ya reside en el ecosistema de GitLab,
además de un contexto propio del repositorio al igual que GitHub Actions.

●​ ¿Para qué la usaríamos? La elegiríamos si el equipo decidiera usar GitLab como
plataforma de gestión de código. Nos permitiría definir pipelines complejos para
construir, probar y desplegar todos los componentes de SaveApp desde un único
lugar.

Azure DevOps

48

Informe de Proyecto Final

●​ ¿Qué es? Azure DevOps es una suite de servicios integral de Microsoft que abarca
todo el ciclo de vida del desarrollo de software. No es solo una herramienta de
CI/CD, sino una plataforma unificada que incluye Azure Boards para la planificación
ágil (similar a Jira), Azure Repos para el control de código fuente (Git), Azure
Pipelines para la automatización de compilación y despliegue (CI/CD), y Azure
Artifacts para la gestión de paquetes.

●​ Ventajas y Desventajas: Su principal ventaja es ser una solución "todo en uno"
fuertemente integrada, lo que simplifica enormemente la cadena de herramientas al
no tener que gestionar diferentes servicios para planificación, código y despliegue.
Su interfaz de usuario es moderna e intuitiva, y su integración con el ecosistema de
la nube de Azure es nativa y potente, aunque también soporta despliegues a otras
nubes como AWS o GCP. Su principal desventaja es ser de Microsoft.

●​ ¿Para qué la usaríamos? Utilizaríamos Azure Pipelines para crear flujos de CI/CD
que compilen, prueben y desplieguen automáticamente cada componente de la
aplicación en los diferentes entornos.

49

Informe de Proyecto Final

PROPUESTA DE SOLUCIÓN
Introducción general
La solución propuesta para SaveApp busca ofrecer una herramienta práctica que ayude a
los usuarios a aprovechar al máximo los descuentos y beneficios de sus tarjetas de crédito y
débito. La aplicación centraliza la información pública de promociones bancarias y
comerciales, la organiza de forma clara y la combina con funciones de inteligencia artificial y
geolocalización para brindar recomendaciones útiles en el momento de compra. Más que
una app de recopilación de descuentos, SaveApp se orienta a simplificar la toma de
decisiones cotidianas sobre qué tarjeta conviene usar en cada comercio, aportando
comodidad y ahorro al usuario.

Alcance funcional
La solución contempla una amplia gama de funcionalidades diseñadas para cubrir todas las
etapas del descubrimiento, comprensión y uso de beneficios bancarios. El sistema permite a
los usuarios registrar sus tarjetas de forma segura, sin incluir información sensible, y
acceder a beneficios personalizados en función de su perfil, ubicación y hábitos de compra.
Se incluye un buscador avanzado con filtros detallados, un asistente inteligente basado en
IA y un sistema de seguimiento de reintegros para asegurar que los descuentos prometidos
sean realmente acreditados.

Además, el enfoque multilenguaje garantiza accesibilidad desde el inicio, contemplando la
futura expansión regional del producto.

Historias de Usuario

●​ Registro con Google: Como usuario, quiero poder registrarme e iniciar sesión
utilizando mi cuenta de Google, para simplificar el proceso de acceso y evitar tener
que recordar contraseñas adicionales.

●​ Favoritos de marcas: Como usuario, quiero poder marcar mis marcas favoritas,
visualizarlas en una sección dedicada y eliminarlas cuando desee, para acceder
fácilmente a las ofertas que más me interesan.

●​ Cambio de idioma: Como usuario, quiero poder cambiar el idioma de la aplicación
entre español e inglés, para utilizarla en mi idioma preferido.

●​ Reporte de errores: Como usuario, quiero poder reportar errores o problemas que
encuentre en la aplicación, para contribuir a su mejora continua.

●​ Donaciones a fundaciones: Como usuario, quiero poder donar parte del dinero que
ahorré mediante la app a una fundación benéfica, para colaborar con causas
sociales de manera sencilla.

50

Informe de Proyecto Final

●​ Guardar ofertas: Como usuario, quiero poder guardar ofertas para revisarlas más
tarde y visualizarlas en una sección de ofertas guardadas, para poder aprovecharlas
en otro momento.

●​ Reportar ofertas: Como usuario, quiero poder reportar una oferta (por ejemplo, si
está vencida o no corresponde), para mantener la información de la aplicación
actualizada y confiable.

●​ Mapa de comercios adheridos: Como usuario, quiero poder visualizar los
comercios adheridos en un mapa interactivo, para ubicar fácilmente dónde puedo
aprovechar los descuentos.

●​ Métodos de pago válidos: Como usuario, quiero poder ver los métodos de pago
válidos para cada oferta (crédito, débito, QR, etc.), para saber con qué medio puedo
aplicarla.

●​ Información destacada por tipo de oferta: Como usuario, quiero que la app me
muestre la información más relevante según el tipo de oferta (por ejemplo, cuotas sin
interés, reintegros o descuentos directos), para entender rápidamente cómo
aprovecharla.

●​ Acceso al enlace original de la oferta: Como usuario, quiero poder acceder
mediante un botón directo al enlace original de la oferta en el sitio del banco o
comercio, para consultar más detalles si lo necesito.

●​ Preguntas predefinidas en el asistente virtual: Como usuario, quiero poder
seleccionar desde la pantalla del asistente virtual una lista de preguntas sugeridas o
ejemplos, para facilitar la interacción sin tener que escribir manualmente.

●​ Visualización de términos y condiciones originales: Como usuario, quiero poder
acceder al documento original de los términos y condiciones de cada oferta, para
leer la información completa cuando lo considere necesario.

●​ Visión general de métricas: Como administrador, quiero visualizar en el dashboard
un resumen con métricas clave (cantidad de usuarios, tarjetas totales, ofertas activas
e históricas), para obtener una panorámica rápida del estado del sistema.

●​ CRUD de entidades principales: Como administrador, quiero crear, leer, actualizar
y eliminar registros de entidades del sistema, para mantener el catálogo y los datos
operativos consistentes desde una sola interfaz.

●​ Filtrado de Vistas: Como administrador, quiero poder filtrar y buscar la visualización
de los registros en los listados de entidades, para adaptar la información a mis
necesidades y facilitar la gestión de los datos.

●​ Métricas por entidad: Como administrador, quiero ver desgloses de métricas por
banco y por marca (cantidad de tarjetas por banco, cantidad de ofertas por banco,
cantidad de ofertas por marca), para identificar tendencias y concentraciones.

51

Informe de Proyecto Final

●​ Métricas por usuario: Como administrador, quiero consultar indicadores por usuario
(cantidad de seguimientos por usuario, cantidad de tarjetas por usuario, cantidad de
usuarios por banco), para detectar patrones de uso y segmentaciones.

●​ Métricas por tarjeta/oferta: Como administrador, quiero acceder a métricas
específicas (cantidad de ofertas por tarjeta), para evaluar cobertura y relevancia de
los medios de pago soportados.

Roles involucrados

●​ Usuario: Persona que se registra en la app, configura sus tarjetas y métodos de
pago, consulta descuentos y recibe notificaciones. Es el actor principal del sistema.

●​ Administrador de la Aplicación: Encargado del mantenimiento técnico y
supervisión del sistema. Asegura la actualización correcta de los datos extraídos, la
seguridad y privacidad de la información y la operatividad general.

●​ Agentes de IA: Actores lógicos del sistema que se encargan del análisis semántico
de las promociones y el procesamiento de las mismas.

●​ Asistente Virtual o Chatbot: Agente conversacional automatizado que asesora al
usuario en tiempo real sobre qué tarjeta o método de pago utilizar, en base a sus
hábitos y perfil.

Diseño del sistema

Arquitectura

SaveApp adopta una arquitectura cliente–servidor con multirepo para separar
responsabilidades, versionar y desplegar cada pieza en forma independiente. La app móvil
en Flutter interactúa exclusivamente con una API GraphQL servida por un backend en
Node.js. Todas las lecturas y escrituras de la app pasan por esta API, que aplica reglas de
negocio, autorización por resolver y composición de datos antes de persistir o consultar en
la base de datos MongoDB.

En paralelo, un pipeline ETL opera de forma asíncrona y desacoplada: los crawlers extraen
información pública de bancos/billeteras, la etapa de transformación la normaliza y valida, y
la capa de carga publica los registros ya curados en Mongo mediante upserts idempotentes.
La app no se comunica jamás con el ETL, consume únicamente datos consolidados por la
API asegurando tiempos de respuesta predecibles y una consistencia eventual del catálogo
frente a las actualizaciones continuas.

Para operación y monitoreo, un dashboard interno consulta directamente la base (o vía API
cuando aplica) para revisar estados del ETL, auditorías de cambios y salud del sistema.
Este diseño separa claramente el tráfico online (app ↔ API ↔ base) de las actualizaciones

52

Informe de Proyecto Final

batch/near-real-time (ETL ↔ base), minimiza acoplamientos y facilita el escalado
independiente de lectura, escritura y procesamiento. [1]

Vista general

●​ App móvil:

○​ Frontend (Flutter): recibe la información desde el backend a traves de la
API GraphQL/HTTPS con autenticación por token, además, cachea vistas y
aplica paginación/infinite scroll para listas largas de ofertas.

○​ Backend API (Node.js + GraphQL): orquesta la lógica de negocio, aplica
autorización a nivel de resolver, compone agregados y expone schemas
tipados.

●​ Base de datos (MongoDB): fuente de verdad para usuarios, tarjetas, ofertas,
marcas y ubicaciones. Usa índices por vigencia/categoría y garantiza upserts
idempotentes y mantiene versionado/auditoría de cambios relevantes.

●​ Pipeline ETL (Extracción → Transformación → Carga): recolecta, interpreta e
inserta ofertas normalizadas sin interferir con el tráfico online; controla reintentos,
deduplicación y trazabilidad por fuente/fecha.

●​ Dashboard operativo: interfaz para equipo interno que consulta estados del ETL,
verifica integridad de datos, revisa alertas y ejecuta tareas administrativas con
permisos restringidos.

53

Informe de Proyecto Final

Multirepo y responsabilidades

SaveApp-Backend:

Lógica de negocio, autorización a nivel resolver, composición de agregados y
validaciones. Expone schemas tipados y endpoints de administración restringidos.
Es una API GraphQL construida con Express 5, Apollo Server y Type-GraphQL que
implementa la lógica de negocio central de SaveApp.

El backend sigue una arquitectura en capas que procesa las peticiones a través del
siguiente flujo:

El backend posee las siguientes responsabilidades por Capa:

-​ Capa de Servidor HTTP: Express 5 maneja las conexiones HTTP y CORS.
-​ Capa de Middleware: Incluye autenticación Firebase (firebaseAuth) y

limitación de tasa (rateLimiter).

54

Informe de Proyecto Final

-​ Capa GraphQL: Apollo Server ejecuta queries y mutations, con
Type-GraphQL generando el schema desde clases TypeScript. index.ts:5-9
GraphQL Shield aplica autorización a nivel resolver mediante reglas
declarativas de permisos.

-​ Capa de Resolvers: Implementa la lógica de negocio y composición de
agregados. index.ts:12 Utiliza modelos compartidos del paquete
@saveapp-org/shared.

-​ Capa de Acceso a Datos: Mongoose ODM gestiona las operaciones con
MongoDB.

-​ Sistema de Caché: Implementa una estrategia de dos niveles (L1 en
memoria, L2 en MongoDB) para optimizar respuestas de lectura intensiva.
cache.ts:2-3 El sistema se conecta a dos instancias MongoDB separadas:
MONGO_URI para datos persistentes y CACHE_URI para caché.

El sistema implementa autorización a nivel resolver mediante GraphQL Shield con el
Principio de Menor Privilegio (todas las operaciones denegadas por defecto). Las
validaciones se realizan mediante class-validator en los inputs de GraphQL.

El backend utiliza Firebase Admin SDK para autenticación y está diseñado para
despliegue en contenedores con soporte para Google Cloud Run. El decorador
@Cache del paquete compartido permite aplicar políticas de caché TTL a nivel de
resolver.

SaveApp-Crawlers

Este repositorio que contiene los distintos crawlers responsables de la extracción
periódica desde fuentes públicas (bancos y billeteras). Cada crawler implementa su
propia lógica de parsing y normalización de datos, generando registros con su
respectivo recordId, utilizado como clave de referencia externa para detectar si un
elemento ya existe en la base antes de intentar insertarlo. De esta manera, se evita
la duplicación de información y se mantiene la integridad del catálogo. Además, en
este repositorio se encuentra la capa de transformación y carga, que estandariza los
datos extraídos y realiza su inserción/actualización en la base de datos.

Implementa un pipeline ETL con tres capas independientes que se comunican
mediante archivos JSON

El procesamiento interno de la capa de transformación sigue estos pasos:

55

Informe de Proyecto Final

El sistema previene duplicados verificando la existencia de ofertas antes del
procesamiento usando recordId como clave de referencia externa. Procesa ofertas
en lotes configurables (por defecto 100) con caché y reintentos. El enriquecimiento
con IA usa Google Gemini para categorización, descripción y extracción de campos
estructurados. Las transacciones requieren MongoDB en modo replica set para
garantizar atomicidad . Incluye wrappers listos para GCP Pub/Sub y Cloud Run
Jobs.

SaveApp-SaCrawl

Librería compartida utilizada por todos los crawlers para estandarizar su ciclo de
vida. Proporciona utilidades comunes como manejo de sesiones, parsers,
normalización de campos (fechas, monedas, porcentajes), validación previa al
upsert, logging estructurado y métricas. Además, centraliza la definición del uso de
recordid dentro del flujo de carga para asegurar que las inserciones sean
idempotentes.

El siguiente diagrama ilustra el flujo completo de procesamiento de datos en
SaveApp-SaCrawl, desde las fuentes de datos hasta la persistencia final:

56

Informe de Proyecto Final

El proceso comienza con las Fuentes de Datos (Data Sources), donde el código del
usuario interactúa con páginas web y APIs para extraer datos sin procesar. Estos
datos pasan luego a la capa de Ingesta Paralela (Parallel Ingestion), donde
ParallelRunner ejecuta el código de scraping de forma concurrente usando pools de
procesos o hilos, soportando modos de salida como lista o generador.

Una vez ingresados los datos, entran en la fase de Parsing y Validación (Parsing &
Validation). Las funciones de saparsing.py como parse_text_date() y
parse_availability() procesan datos textuales, mientras que las funciones de
satype.py como typeString(), typeDate(), typeInt() y typeFloat() validan y convierten
tipos.

El corazón del sistema es el Modelo de Datos (Data Model), representado por
SaRecord, el dataclass central que representa ofertas scrapeadas. Su método
__post_init__() ejecuta validación automática de campos, y to_dict() serializa el
objeto para persistencia.

Para garantizar la unicidad de los registros, el Sistema de Identidad (Identity System)
utiliza SaOfferSignature para generar hashes SHA256 desde campos seleccionados
del registro. Este sistema siempre incluye campos por defecto: bank, domain,
country y offerUrl.

La Deduplicación (Deduplication) es manejada por SaRecordDeduper, que mantiene
un caché en memoria de firmas ya vistas. Su método dedup() retorna una tupla
(is_duplicate: bool, signature: str) para cada registro procesado.

Finalmente, la Capa de Salida (Output Layer) utiliza SaWriter, un context manager
que bufferiza registros en un DataFrame. Al salir del contexto, escribe
automáticamente a dos ubicaciones: archivo actual (../data/) y archivo histórico con
timestamp (../history/), soportando formatos JSON, CSV y XLSX.

SaveApp-Shared (Node.js package)

SaveApp-Shared es un paquete Node.js interno que centraliza contratos
compartidos, modelos de datos, plugins y utilidades para los servicios de SaveApp
(Backend y Crawlers).

57

Informe de Proyecto Final

El núcleo del paquete consiste en 9 schemas principales que actúan como contratos
compartidos entre todos los servicios. Estos schemas incluyen entidades
fundamentales como User para cuentas de usuario con integración Firebase, Offer
para ofertas promocionales de tarjetas de crédito y entidades de soporte como
Brand, Store, Card, Bank y Category, además de Comment y Tracking para las
interacciones de usuario.

La arquitectura de schemas utiliza un patrón de decoradores duales que combina
TypeGraphQL para definiciones de tipos GraphQL y Typegoose para estructuras de
colecciones MongoDB. Esta dualidad permite que los mismos schemas sirvan tanto
para APIs GraphQL como para operaciones de base de datos, eliminando la
necesidad de mantener definiciones separadas. Los modelos Mongoose resultantes
se exportan completamente configurados y listos para usar en cualquier servicio
consumidor.

El paquete implementa un plugin sofisticado de soft delete que sobreescribe las
operaciones básicas de Mongoose como delete, find y count con lógica
personalizada de eliminación suave. Este plugin añade automáticamente tres
campos a los schemas: deleted (booleano), deletedAt (fecha opcional) y deletedBy
(referencia opcional al usuario que eliminó el registro). El plugin también extiende los
modelos con métodos de instancia como delete() y restore(), métodos estáticos
como deleteById(), restoreById() y deleteManyByIds(), y query helpers como
withDeleted() y onlyDeleted() que permiten controlar la visibilidad de registros
eliminados en las consultas. Este sistema está aplicado a 8 de los 9 schemas
principales, siendo Tracking la única excepción.

Cuenta con un sistema de caché de dos niveles con una capa L1 en memoria y una
capa L2 persistente en MongoDB. La capa L1 utiliza una estrategia LRU (Least
Recently Used) con un máximo de 1000 entradas, mientras que la capa L2

58

Informe de Proyecto Final

proporciona persistencia con TTL automático mediante un índice expiresAt en
MongoDB.

El sistema incluye un decorador @Cache que permite aplicar caché automático a
nivel de método con deduplicación de requests concurrentes, cache.ts:377-434 y
una funcionalidad de DataStore persistente para almacenar datos que deben
persistir indefinidamente sin TTL. Una característica importante es que el sistema
utiliza una conexión MongoDB completamente separada mediante la variable de
entorno CACHE_URI, lo que permite aislar fallos y escalar el sistema de caché
independientemente de la base de datos principal. mongo.ts:4-28

Además, el paquete proporciona un sistema de logging estandarizado basado en
chalk que ofrece funciones con colores distintivos para diferentes niveles de log:
logInfo, logWarn, logError, logSuccess, logDebug y logStatus, facilitando el
debugging visual en todos los servicios. Las exportaciones están organizadas
mediante un mapa modular que permite importaciones específicas desde diferentes
puntos de entrada como @saveapp-org/shared/schemas para schemas,
@saveapp-org/shared/models para modelos, @saveapp-org/shared/cache para el
sistema de caché, y @saveapp-org/shared/logger para utilidades de logging.
package.json:29-69

59

Informe de Proyecto Final

SaveApp-Infrastructure

SaveApp Infrastructure es un sistema de infraestructura como código en Google
Cloud Platform que gestiona dos sistemas separados mediante una arquitectura de
VPC dual. El sistema principal incluye servicios de aplicación (saveapp-backend,
saveapp-dashboard-backend, saveapp-dashboard-frontend) desplegados en Cloud
Run, mientras que el sistema ETL opera en una VPC completamente aislada para
procesar datos.

El pipeline ETL sigue una arquitectura event-driven que se ejecuta en tres etapas
coordinadas mediante Pub/Sub topics. Cloud Scheduler activa la función
pipeline-orchestrator diariamente a las 2 AM (zona horaria México), que ejecuta los
cuatro crawler jobs en paralelo. Cada crawler extrae datos y los escribe al bucket
saveapp-crawler-processing, archivando copias en saveapp-crawler-history. Al
completar, publican mensajes "SUCCESS" al topic crawler-completed, disparando
automáticamente la función transformation-trigger que ejecuta el job de
transformación con APIs de Google Maps y Gemini AI. Finalmente, el job de carga
persiste los datos procesados en MongoDB mediante inserciones por lotes de 100
registros.

La infraestructura está construida con módulos Terraform que siguen un orden de
dependencias estricto. El módulo base habilita 18 APIs de GCP, seguido por los
módulos de networking que crean las VPCs dual con sus conectores. El módulo IAM
provisiona 9 service accounts con permisos de mínimo privilegio y configura
Workload Identity Federation para autenticación sin claves desde GitHub Actions.

60

Informe de Proyecto Final

Los módulos de storage crean 7 buckets con políticas de lifecycle: el bucket de
procesamiento tiene auto-eliminación a los 7 días, mientras que el de historial
implementa transiciones automáticas entre clases de almacenamiento para optimizar
costos. El módulo de monitoring configura log sinks y políticas de alertas que
notifican por email cuando ocurren fallos en crawlers, transformación o mensajes
llegan a dead letter queues.

Los operadores pueden ejecutar el pipeline manualmente usando el script
run-etl-pipeline.sh, que obtiene la URI de la función orquestadora de los outputs de
Terraform y realiza una petición POST autenticada al endpoint /orchestrate_pipeline.
La infraestructura soporta múltiples ambientes (dev/prod) mediante backends de
estado Terraform separados en environments/dev/backend.tf y
environments/prod/backend.tf.

SaveApp-Dashboard

El dashboard de SaveApp muestra métricas sobre usuarios, bancos, tarjetas y
ofertas, con visualizaciones interactivas configurables por el usuario. El sistema tiene
tres componentes: el frontend DashboardGrid que renderiza la cuadrícula, el
backend con endpoint /api/dashboard/insights que ejecuta agregaciones MongoDB,
y un sistema de preferencias en localStorage.

Métricas disponibles:

-​ Numéricas: Total de Usuarios, Total de Tarjetas, Ofertas Activas, Total de
Ofertas, Promedio de Ofertas Rastreadas.

-​ Distribuciones: Tarjetas por Banco, Ofertas por Banco/Marca/Tarjeta,
Usuarios por Banco, Promedio de Tarjetas por Usuario.

Además, los usuarios pueden alternar entre tipos de gráficos (barras, líneas, pastel)
para las distribuciones..

61

Informe de Proyecto Final

SaveApp-Chatbot

SaveApp-Chatbot es un backend desarrollado en Python 3.11 con FastAPI que
funciona como asistente conversacional para la plataforma SaveApp. El sistema
integra tres tecnologías principales: Google Gemini para procesamiento de lenguaje
natural, MongoDB para persistencia de datos, y Firebase Authentication para gestión
de usuarios.

La arquitectura del sistema se centra en un orquestador llamado ChatOrchestrator
que coordina todas las operaciones. Este orquestador gestiona la comunicación
entre el cliente de MongoDB (que almacena información de usuarios, tarjetas,
ofertas, marcas y categorías), el cliente de Gemini (que procesa las consultas en

62

Informe de Proyecto Final

lenguaje natural), y un sistema de prompts que define el comportamiento del
asistente tanto en español como en inglés.

El flujo de procesamiento comienza cuando un usuario envía un mensaje a través de
los endpoints POST /new_chat o POST /send_message, ambos protegidos por
autenticación Firebase mediante tokens Bearer. Una vez verificado el token, el
sistema carga el prompt del sistema según el idioma configurado y construye un
contexto personalizado consultando MongoDB para obtener las tarjetas registradas
del usuario, sus marcas favoritas y categorías de interés. Este contexto se inyecta al
inicio del historial de mensajes para que el modelo de IA tenga acceso a la
información del usuario en cada interacción.

El sistema utiliza la capacidad de function calling de Google Gemini para ejecutar
búsquedas de ofertas de manera inteligente. El modelo decide cuándo invocar la
función buscar_ofertas basándose en la intención del usuario, interpretando frases
como "salir a comer" como búsquedas en la categoría de restaurantes. El asistente
está configurado para responder de forma clara y concisa en español, nunca
inventar ofertas, y manejar conversaciones casuales sin ejecutar búsquedas
innecesarias.

Un aspecto técnico importante es el sistema de normalización de categorías
implementado en CATEGORY_MAP, que mapea variaciones de texto del usuario
(como "supermercados", "supermercado", "mercado") a nombres canónicos en la
base de datos ("Supermarkets"). Esta normalización incluye eliminación de
diacríticos y conversión a minúsculas para garantizar coincidencias precisas.

63

Informe de Proyecto Final

SaveApp-Landing

Es un sitio web estático publicado en saveapp.com.ar construido con Next.js 15 que
sirve como página de aterrizaje para recopilar registros de acceso anticipado antes
del lanzamiento de la beta privada de SaveApp. Se encuentra desplegado mediante
GitHub Pages y Cloudflare como DNS/proxy para poder medir su tráfico de red.

SaveApp-Flutterflow

SaveApp es una aplicación Flutter que utiliza una arquitectura de tres capas con
integración backend mediante GraphQL y REST APIs. El sistema se organiza en
tres grupos de API principales: autenticación (SaveAppAPIAuthGroup), operaciones
de datos GraphQL (SaveAppAPIGraphqlGroup), y chatbot con IA
(SaveAppAPIChatbotGroup).

El sistema implementa un interceptor de tokens (TokenRefresher) que gestiona
automáticamente la renovación de tokens JWT antes de cada llamada a las APIs
protegidas. Este interceptor se adjunta tanto al grupo GraphQL como al de chatbot,
garantizando que las sesiones de usuario permanezcan activas sin intervención
manual.

64

http://saveapp.com.ar

Informe de Proyecto Final

El flujo de datos sigue un patrón de caché-first donde FFAppState mantiene
estructuras de caché específicas (ForYouCache, DiscoverCache, myCardsCache,
BanksCache) que minimizan las llamadas redundantes al backend. Cada llamada
API incluye métodos de extracción tipados que parsean campos específicos del
JSON de respuesta usando JSONPath.

La arquitectura GraphQL utiliza un formato de request body consistente con campos
query y variables, permitiendo consultas parametrizadas y paginación. Las
operaciones incluyen gestión de usuarios, tarjetas, ofertas, bancos, marcas,
categorías, favoritos y seguimientos, todas accesibles mediante instancias estáticas
de clases de llamada.

Pantallas principales [1]​

●​ Vista inicial (Initial Preview): Vista inicial que se muestra al iniciar la aplicación por
primera vez que explica las funcionalidades de la aplicación y para qué se usan los
permisos solicitados al usuario.

65

Informe de Proyecto Final

●​ Inicio / Registro / Login: Interfaces simples y limpias con validaciones de campos
esenciales. Incluyen soporte para recuperación de contraseña y configuración inicial.

●​ “Para ti” (For you): Vista personalizada que muestra promociones relevantes según
ubicación actual, tarjetas cargadas y preferencias anteriores.

●​ “Explorar” (Discover): Vista que permite buscar todas las promociones activas.
Incluye filtros por banco, tipo de tarjeta, ubicación, día de la semana, tipo de
beneficio (descuento, reintegro, cuotas o promoción), rubro comercial, monto mínimo
y medio de pago.

●​ “Mis tarjetas” (My Cards): Representación visual estilo billetera donde el usuario
puede ver, agregar, editar o eliminar sus tarjetas. Se muestran con sus respectivos
logos de banco y marca.

●​ “Ofertas guardadas” (Saved Offers): Vista donde el usuario puede consultar las
ofertas que ha marcado previamente para revisar o utilizar más adelante. Estas
ofertas se organizan cronológicamente o por rubro, y permiten realizar acciones
como eliminar, compartir o ver en detalle.

●​ “Oferta” (detalle de promoción): Pantalla que presenta toda la información
estructurada de una oferta específica, procesada previamente por IA. Incluye: tope
de descuento o reintegro, días de la semana donde aplica, período de validez,
tarjetas compatibles, medio y canal de aplicación (presencial o web), tiempo
estimado de reintegro y listado de comercios adheridos. También puede mostrar
alertas importantes extraídas del análisis semántico del texto original.

●​ “Marcas favoritas”: Vista donde el usuario puede seleccionar sus marcas
preferidas de una lista completa o buscador. Las marcas favoritas se utilizan para
priorizar recomendaciones, enviar alertas y personalizar los resultados en “Para ti” o
“Explorar”.

●​ “Asistente”: Chatbot embebido que responde en lenguaje natural. El usuario puede
consultar por promociones, reintegros, consejos financieros, y recibir respuestas
personalizadas.

Pantallas secundarias [1]

●​ Menú lateral (Drawer): Vista lateral accesible desde cualquier pantalla principal.
Permite al usuario gestionar su cuenta y acceder a funciones complementarias de la
aplicación. Incluye opciones como: cambio de idioma (Español/Inglés), visualización
de favoritos, ofertas guardadas y seguimientos activos. También integra botones
para reportar errores, realizar donaciones a fundaciones asociadas y alternar entre
modo claro y oscuro.

●​ Perfil: Pantalla que muestra la información del usuario autenticado (nombre, correo
electrónico y foto o inicial). Desde esta vista, el usuario puede cerrar sesión o
actualizar su información personal.

66

Informe de Proyecto Final

●​ Favoritos: Vista dedicada a las marcas favoritas del usuario. Permite visualizar los
comercios o entidades previamente marcados como favoritos, eliminarlos o acceder
rápidamente a sus promociones vigentes. Esta sección ayuda a personalizar los
resultados de las pantallas “Para ti” y “Explorar”, priorizando los beneficios más
relevantes.

●​ Ofertas guardadas: Pantalla donde se muestran las ofertas que el usuario decidió
conservar para utilizarlas más adelante. Cada oferta incluye información clave como
el comercio, tipo de beneficio, días de aplicación y entidad bancaria. Desde aquí se
pueden eliminar las ofertas, compartirlas o acceder al detalle completo.

●​ Seguimientos: Vista que centraliza el monitoreo de los reintegros activos,
mostrando para cada transacción la fecha de inicio, la fecha estimada de finalización
y el estado del beneficio. Permite eliminar registros manualmente o recibir alertas
automáticas cuando un reintegro está próximo a acreditarse.

Implementación

Módulos del sistema

Sobre la arquitectura de la app, la solución se organiza en módulos funcionales que
encapsulan responsabilidades y datos, y se comunican mediante GraphQL (queries,
mutations y, cuando corresponde, subscriptions), con interfaces claras entre ellos.

●​ Autenticación: Gestiona alta, login y sesiones seguras (Google/Email), renovación
y expiración de tokens, recuperación de credenciales y políticas por rol. Además, la
API valida el contexto del usuario para proteger datos y operaciones.

●​ Tarjetas: Permite al usuario registrar sus tarjetas de crédito y débito especificando
banco emisor, tipo y marca, sin ingresar datos confidenciales como número o código
de seguridad. Esta información se utiliza para filtrar y recomendar beneficios
compatibles en base a las promociones disponibles.

●​ ETL: El proceso ETL se organiza en tres etapas encadenadas. Extracción obtiene
datos brutos desde las fuentes públicas mediante crawlers. Transformación
constituye el núcleo inteligente: sobre los datos extraídos aplica submódulos
específicos para unificar entidades (Entity Matching / Brand Judging), normalizar
comercios y ubicaciones (POIs) y procesar los Términos y Condiciones con una
Prompting Architecture que interpreta y estructura las reglas de cada oferta.
Finalmente, Carga persiste el resultado ya curado en la base de datos mediante
operaciones idempotentes, listas para ser consultadas por los servicios de la
aplicación.

67

Informe de Proyecto Final

○​ Extracción (Web Crawlers): Está compuesta principalmente por
webcrawlers, scripts escritos en Python que utilizan librerías como Requests
y BeautifulSoup para navegar sitios de bancos y billeteras de manera
automatizada, detectando estructuras conocidas y extrayendo la información
relevante para luego almacenarla.

○​ Transformación: Es el componente más importante del sistema,
correspondiente a la fase de transformación del flujo ETL, donde se realiza el
procesamiento inteligente de los datos extraídos por los crawlers. Este
módulo utiliza modelos de lenguaje (LLMs) a través de APIs externas (como
Gemini) para interpretar y estructurar la información de las ofertas. Sus
principales funciones incluyen:

■​ Análisis semántico de títulos, descripciones y términos y condiciones
de las promociones.

■​ Normalización de la información en un formato estándar,
independiente de la fuente original.

■​ Clasificación automática por tipo de beneficio (descuento, reintegro o
cuotas).

■​ Validación y limpieza de datos, eliminando duplicados o entradas
inválidas.

■​ Enriquecimiento contextual, agregando campos derivados como
bancos, marcas, categorías y métodos de pago válidos.

■​ Generación de objetos normalizados, listos para ser cargados en la
base de datos.

Dentro de Transformación se resuelve la vinculación de entidades clave
detectadas en las ofertas con nuestro catálogo: marcas y comercios.
Primero se determina la marca correcta y, a partir de ello, se resuelven los

68

Informe de Proyecto Final

locales donde aplica la promoción. El objetivo es garantizar IDs consistentes,
evitar duplicados y permitir consultas y notificaciones confiables.

Brand Matching
Vincula la marca detectada en la oferta con el catálogo. Primero intenta una
coincidencia exacta sobre el nombre normalizado y, si la encuentra, devuelve
el brand_id existente. Si falla, aplica coincidencia parcial evaluando
variantes y alias para decidir si pertenece a un grupo de marca ya registrado;
si corresponde, retorna ese brand_id. Cuando ninguna de las dos coincide,
crea la marca y devuelve el nuevo brand_id. Todas las escrituras se
realizan como upserts idempotentes para mantener consistencia y
trazabilidad.

Store Matching
Complementa al paso anterior resolviendo los locales donde aplica la
promoción. Si los TyC indican que rige para todos los locales de la marca, se
expande contra la lista de comercios adheridos existente. Si enumeran
sucursales específicas, se normalizan nombre y dirección, se busca el
comercio y, de no existir, se crea y se devuelve su store_id. Ante
ambigüedad en la fuente, se asocia provisionalmente por marca + localidad y
se deriva a una cola de revisión.

69

Informe de Proyecto Final

Este módulo constituye el núcleo de inteligencia del sistema, asegurando la
calidad y coherencia de la información antes de ser almacenada.

○​ Carga: Recibe los datos transformados y realiza operaciones upsert en la
base de datos MongoDB, garantizando consistencia e integridad. Indexa
campos críticos (vigencia, ubicación, categoría), vincula las ofertas con
bancos, marcas y tarjetas. Permite que el backend exponga información
curada y lista para consulta a través de GraphQL.

Todo el sistema corre en la nube con capacidad de escalado horizontal. La
Extracción se paraleliza por crawler, la Transformación se despliega como servicio
independiente que concentra los submódulos mencionados, y la Carga opera con
paralelismo controlado hacia la base de datos para sostener throughput sin
comprometer consistencia.

70

Informe de Proyecto Final

●​ Asistente AI: Chatbot embebido basado en modelos de lenguaje natural (LLMs),
diseñado para brindar asesoramiento financiero personalizado. Puede responder
preguntas como “¿Qué promoción tengo cerca hoy?” o “¿Cuándo me deberían
haber reintegrado la compra de Carrefour?”, accediendo al contexto del usuario y a
los datos procesados por la aplicación.

●​ Notificaciones push: Envía alertas contextuales al usuario sobre nuevas
promociones, reintegros pendientes o beneficios cercanos. Utiliza los datos de
geolocalización y preferencias personales para priorizar las notificaciones más
relevantes.

Tecnologías utilizadas y justificación
Cada tecnología fue seleccionada como resultado de un proceso iterativo de evaluación,
pruebas de concepto y validación con respecto a la problemática planteada. A diferencia del
marco teórico, donde se consideran alternativas en abstracto, en esta sección se justifica
por qué se descartaron opciones y qué aprendizajes surgieron durante el desarrollo. Esta
sección también expone las decisiones tomadas frente a imprevistos técnicos y limitaciones
propias del ecosistema argentino.

●​ Flutter (Frontend mobile)

El proceso de definición del frontend comenzó con la idea de una Progressive Web
App desarrollada en React, usando PWABuilder para facilitar su instalación. Sin
embargo, las pruebas en iOS revelaron múltiples problemas: ausencia de
notificaciones push, restricciones en el acceso a la geolocalización en segundo
plano, baja performance y falta de compatibilidad con gestos y comportamiento
nativo. Estas limitaciones afectaban directamente a funcionalidades críticas del
sistema como GeoFencing o alertas contextuales, forzando un replanteo de la
arquitectura.

71

Informe de Proyecto Final

Se compararon Flutter y React Native como soluciones multiplataforma reales. Si
bien React Native facilitaba el onboarding del equipo por su base en JavaScript, se
identificaron problemas con compatibilidad en iOS y necesidad de usar módulos
nativos adicionales. En contraposición, Flutter ofrecía mejor performance gráfica,
una comunidad creciente y control total sobre el diseño visual, lo que lo volvía más
apropiado para una interfaz centrada en tarjetas, beneficios y recomendaciones.

No obstante, al no tener experiencia previa en Flutter, el equipo optó por usar
FlutterFlow, una plataforma Low Code que permite generar código limpio, mantener
extensibilidad y exportar a entornos productivos sin sacrificar personalización. Aun
así, usar una plataforma externa trae compromisos; por un lado, personalización
más acotada que en Flutter puro, por el otro, dependencia de un tercero para el ciclo
de desarrollo. En la práctica, el equipo sorteó la primera limitación incorporando
funciones personalizadas en Flutter nativo dentro del proyecto (mediante custom
code, widgets y acciones), manteniendo la flexibilidad donde hacía falta. Respecto a
la dependencia, FlutterFlow permite descargar el código del proyecto, lo cual resulta
clave para continuar el desarrollo en Flutter puro cuando se necesite, reduciendo el
lock-in y asegurando sustentabilidad técnica a largo plazo.

Un hallazgo relevante, que no había surgido con claridad en la investigación inicial,
fue que el geofencing no tiene soporte pleno en los frameworks multiplataforma
(Flutter/React Native) porque es capacidad propia del sistema operativo y se
gestiona únicamente con lenguaje nativo (Swift en iOS y Kotlin en Android). Se
exploraron alternativas como cron jobs en background, pedir permisos de ubicación
“siempre” como si fuera una app de navegación o integrar librerías nativas
comerciales. Ninguna resultó viable ya que los cron jobs son poco confiables por las
políticas de suspensión, la ubicación constante degrada la experiencia
(batería/privacidad) y suele ser rechazada por las guías de plataforma, y las librerías
nativas evaluadas implicaban costos de licencia elevados, riesgos de bloqueos del
SO en actualizaciones y baja mantenibilidad. En consecuencia, el enfoque con
FlutterFlow permitió entregar un MVP funcional y escalable en menos tiempo, con el
plan explícito de migrar a implementaciones nativas para geofencing si la evolución
del producto lo exige.

●​ Node.js + Apollo Server + GraphQL (Backend API)

El backend se prototipó inicialmente en REST, pero la necesidad de suministrar a
cada pantalla solo la información estrictamente relevante motivó la adopción de
GraphQL. Esta decisión introdujo dos ventajas clave, en primer lugar la exposición
del servicio mediante un mono-endpoint (/graphql) que simplifica el orquestado de
llamadas en el cliente móvil y reduce el acoplamiento, en segundo lugar la selección
exacta de campos a nivel de consulta (field-level selection) permite al frontend definir
la “forma” de la respuesta y evitar tanto el overfetching como el underfetching. El
resultado son payloads más pequeños y menos viajes de red, con impacto directo en
latencia, consumo de datos y batería, especialmente beneficioso en dispositivos de
menor potencia o en contextos de conectividad limitada. Esto fue determinante en
vistas personalizadas como la de “For You”, donde el volumen y la variabilidad de
datos dependen del perfil del usuario.

72

Informe de Proyecto Final

La curva de aprendizaje de GraphQL y sus resolvers supuso un desafío inicial. No
obstante, Apollo Server facilitó la modularización del esquema, la integración de
middlewares (autenticación y logging) y el manejo de errores tipados. El desarrollo
comenzó en JavaScript, pero la necesidad de tipado estático para mantener la
coherencia entre el schema, los resolvers y los modelos de datos llevó a migrar a
TypeScript (una versión transpilada de JavaScript con tipado fuerte). Esta decisión
también se vio impulsada por la mejora de la Developer Experience: gracias a
TypeScript y su integración con el IDE, el desarrollo se enriquece con
autocompletado inteligente y detección temprana de errores de tipo, lo que reduce
fallos de integración antes de la ejecución. El resultado es un ciclo de desarrollo más
rápido y predecible, con menos errores por desalineaciones de schema, y una base
de código más mantenible y extensible.

Node.js se seleccionó por su naturaleza asincrónica y su eficiencia en el manejo de
múltiples conexiones concurrentes, junto con su alta compatibilidad con el resto del
stack JavaScript. Esto permitió mantener una base tecnológica unificada entre
frontend y backend, simplificando el desarrollo, las pruebas y la evolución del
producto.

●​ MongoDB (Base de datos NoSQL)

Durante las primeras iteraciones del diseño de datos se contempló el uso de bases
relacionales como PostgreSQL, pero la naturaleza semiestructurada de las
promociones (campos opcionales, condiciones variables, rangos, fechas, tarjetas y
rubros) impulsó la adopción de un modelo NoSQL. Tras evaluar alternativas NoSQL
se seleccionó MongoDB por su flexibilidad de esquema, el soporte natural para
documentos anidados y su capacidad geoespacial nativa (índices 2dsphere y
consultas por proximidad), aspectos críticos para el motor de cercanía. Esta elección
redujo la complejidad del modelado inicial y habilitó respuestas ágiles en filtros por
ubicación y vigencia.

En cuanto al despliegue, se optó por MongoDB Atlas, plataforma de datos
totalmente administrada y multinube que integra base de datos, búsqueda y
analítica. La condición multinube evita el lock-in con un proveedor específico, a
diferencia de alternativas como DynamoDB, acopladas a AWS, y permite ejecutar
en el proveedor que resulte más conveniente en cada etapa. En este contexto, el
servicio fue levantado en GCP para aprovechar créditos disponibles, manteniendo la
portabilidad futura entre nubes. Operativamente, Atlas simplifica tareas de
administración (backups, escalado, monitoreo y aplicación de parches), favoreciendo
el foco en las capas de negocio y en la evolución del producto.

●​ Python (Web scraping)

Ante la ausencia de estándares de Open Banking en Argentina, primero se evaluó el
uso de APIs abiertas y, al no cubrir los casos de uso, se decidió implementar
scraping sobre sitios públicos. Durante la fase de investigación se exploraron
Puppeteer, Selenium y Playwright para automatizar la navegación en páginas
dinámicas; Playwright se utilizó únicamente como prueba de concepto dentro de una

73

Informe de Proyecto Final

etapa de la Transformation Layer y, dado que esa capa no prevaleció en la
arquitectura final, no pasó a formar parte del stack. La implementación vigente
priorizó un enfoque liviano con Python, Requests y BeautifulSoup como parser para
HTML, lo que redujo la complejidad operativa y el costo de mantenimiento. En sitios
con estructuras más complejas se aplicaron estrategias acordes al stack —como la
detección de endpoints internos, el manejo de tiempos de respuesta y la
consolidación de contenido renderizado cuando estuvo disponible— evitando
automatizar la navegación del sitio. Python se consolidó por su ecosistema maduro,
su comunidad y la disponibilidad de librerías estables para tareas de crawling y
parsing.

Los principales obstáculos provinieron de barreras anti-bot y de la reputación de IP.
Numerosos sitios o CDNs bloquearon rangos de datacenters y aplicaron limitaciones
de tasa o detección de patrones de tráfico anómalos que se manifestaron como
respuestas 429 o 403 intermitentes, además de huellas de navegador y de
transporte (headers, timing, TLS) que delataron automatización. Se identificó que
una solución efectiva para estos casos era la rotación de proxies.

Gran parte de estas dificultades se resolvieron mediante la creación de sacrawl, una
librería interna que estandarizó el ciclo de vida de cada crawler y concentró un
gestor de sesión, control de ritmo y cuotas, perfiles de fingerprint rotables, utilidades
de parsing y normalización de fechas, monedas y porcentajes, validación previa al
upsert, observabilidad con logging estructurado, métricas y trazas por dominio, e
idempotencia basada en hashes de contenido y claves naturales.

●​ Modelos de Lenguaje (LLM - GPT)

Desde el inicio se contempló el uso de modelos de lenguaje (LLMs), ya que el
procesamiento confiable de ofertas con terminología legal, formatos heterogéneos y
textos extensos difícilmente podía resolverse solo con reglas. Aun así, las primeras
versiones buscaron reducir costo y complejidad mediante expresiones regulares,
reglas manuales y clasificadores básicos; el enfoque resultó insuficiente por la
ambigüedad del lenguaje y la falta de estandarización entre bancos.

La adopción de un pipeline con LLMs vía APIs externas permitió identificar entidades
clave (topes, vigencias, tarjetas admitidas, condiciones particulares) con mayor
precisión y tolerancia a variaciones de formato. No obstante, su uso introdujo
desafíos propios: alucinaciones (respuestas plausibles pero falsas) y no
determinismo (variabilidad entre ejecuciones con la misma entrada). Para mitigarlos,
se aplicaron buenas prácticas de prompt engineering: instrucciones más estrictas y
orientadas a extracción, ejemplos guiados (few-shot), restricciones de salida (JSON
validado contra esquemas), control de temperatura/top-p, verificación post-proceso
con validadores y reglas, y reintentos con chequeos de coherencia.

Se trabajó también en la división de responsabilidades de prompts, separando
plantillas por tarea (extracción de campos, normalización, clasificación, validación)
para simplificar pruebas y mejorar mantenibilidad.

74

Informe de Proyecto Final

En términos de costo/beneficio, se estableció la necesidad de equilibrar la mejora de
prompts con la elección del modelo: subir de modelo incrementa precisión pero
también costo; mejorar el prompt puede abaratar, aunque con retornos decrecientes.
Por ello, se priorizó medir sobre conjuntos de prueba etiquetados, comparar
variantes (A/B) y seleccionar el punto de operación que maximiza exactitud por
token gastado.

Para sostener el ciclo de vida de prompts se evaluaron herramientas de prompt
management (versionado, historial de cambios, etiquetado por entorno,
experimentación/A-B, métricas de uso, rollbacks y trazabilidad de “prompt → salida
→ coste/latencia”). Se adoptó PromptLayer para centralizar versionado y telemetría
de prompts, asociar ejecuciones a variantes específicas, monitorear consumo por
tarea y facilitar la reproducibilidad de resultados, lo que mejoró la gobernanza y la
capacidad de iteración del pipeline.

Pese a las mejoras, la dependencia de servicios externos y el costo por token
continúan bajo seguimiento, con métricas de precisión, frescura y gasto que orientan
futuras optimizaciones del pipeline y eventuales cambios de proveedor o estrategia.

●​ Firebase Authentication

La primera implementación del sistema de login fue desarrollado por nosotros
utilizando la autenticación de BetterAuth, basado en JWT, para el control de
expiración y validación de roles. Sin embargo, problemas como la falta de
documentación de BetterAuth hacía que mantener un sistema seguro, actualizado y
libre de vulnerabilidades demandara una inversión considerable que no se justificaba
frente a las soluciones existentes.

Firebase Authentication fue elegido por su integración nativa con Flutter, su
confiabilidad, su escalabilidad automática y su interfaz de administración intuitiva.
Además, su esquema de precios permitía implementar todas las funcionalidades
necesarias sin costo.

Inicialmente se implementó el inicio de sesión con correo y contraseña, pero luego
se reemplazó por autenticación mediante Google SSO. Esta decisión resolvió de
forma elegante la validación de identidad, evitando que el sistema tuviera que
manejar contraseñas o flujos de recuperación de credenciales.

El uso de Firebase permitió también sincronizar sesiones en segundo plano, activar
notificaciones personalizadas y simplificar la gestión de usuarios desde un único
panel.

●​ Geolocalización

La geolocalización habilita recomendaciones por cercanía y requiere un encuadre
preciso de permisos y configuración en ambos sistemas operativos. En términos
generales, es necesario explicar claramente el propósito (por ejemplo, mostrar
descuentos cercanos), solicitar el nivel de acceso adecuado (solo al usar la app, en
segundo plano o siempre) y ajustar la aplicación para que reciba actualizaciones de

75

Informe de Proyecto Final

ubicación conforme a las políticas de cada plataforma. El objetivo es pedir el mínimo
permiso necesario, manteniendo transparencia y un equilibrio entre utilidad y
consumo de batería.

La solución principal prevista fue el geofencing por su eficiencia: el sistema operativo
activa la app al entrar o salir de regiones predefinidas alrededor de comercios. Dado
que existe un límite de regiones por aplicación, se planteó un enfoque jerárquico: un
cerco amplio (macro-zona) despierta la app y, al detectar movimiento, se rotan
dinámicamente los cercos “hijos” más relevantes cercanos al usuario.

Sin embargo, esta implementación quedó restringida por el framework
multiplataforma utilizado. En consecuencia, se evaluaron alternativas como la
ubicación en segundo plano (sujeta a throttling como Doze/Low Power y a políticas
que posponen ejecuciones) y la ubicación continua tipo navegación mediante
Foreground Service o actualizaciones constantes (más intrusiva y con mayor
impacto en batería). Dado que estas alternativas no ofrecen una experiencia de uso
adecuada, se decidió posponer la funcionalidad para una etapa siguiente, con
integración nativa (Swift/Kotlin) que permita un geofencing robusto y conforme a las
pautas de cada plataforma.

●​ Notificaciones push

Las notificaciones se integran con FCM (Android) y APNs (iOS) para enviar alertas
contextuales (cercanía a comercios adheridos, vigencias por vencer, reintegros
pendientes). Para habilitar las notificaciones se configuraron las cuentas de
desarrolladores para cada plataforma (Android y iOS) y se vincularon con el proyecto
de Firebase. En ambos casos se solicita el permiso al usuario para habilitar las
notificaciones en su dispositvo.

Para favorecer la comprensión y la aceptación, se desarrollaron pantallas de
pre-permiso que explican de forma clara por qué se solicitan notificaciones
(beneficios cercanos y recordatorios útiles) y cuándo se utilizarán. Esta práctica
mejora la tasa de consentimiento y alinea la experiencia con las políticas de cada
plataforma, manteniendo la transparencia como principio central.

●​ Google Cloud Platform + Terraform

Durante la planificación de infraestructura se evaluaron proveedores como AWS y
Azure. GCP ofreció la mejor sinergia con Firebase, una capa gratuita generosa y una
consola unificada, habilitando un despliegue inicial sin costos y con opciones de
escalabilidad horizontal. A diferencia de otras capas gratuitas, Google además
otorga créditos promocionales que pueden utilizarse en prácticamente cualquier
servicio de la plataforma e incluso en servicios de terceros alojados en su
infraestructura, lo que facilita experimentar y crecer sin incurrir en gasto inmediato.
La integración con Cloud Run, Firestore y Artifact Registry simplificó el despliegue de
contenedores y la gestión de datos, con buena estabilidad, rendimiento y
documentación.

76

Informe de Proyecto Final

Para reforzar portabilidad y gobernanza se incorporó Terraform como Infrastructure
as Code. Esta decisión permite cambiar de cuenta o proyecto de GCP de forma
controlada (por ejemplo, al desvincular el proyecto de cuentas personales o de la
universidad), minimizar el lock-in al describir la infraestructura en código declarativo
y versionado, estandarizar entornos (desarrollo, staging, producción) mediante
módulos y workspaces, y auditar o revertir cambios con planes reproducibles y state
gestionado. En conjunto, GCP aporta un ecosistema conveniente para el arranque y
la operación, mientras que Terraform garantiza reproducibilidad y flexibilidad para
futuras migraciones o reconfiguraciones administrativas.

●​ Docker

Si bien no fue posible dockerizar la totalidad del sistema, dado que el frontend es
una aplicación móvil distribuida a través de tiendas y por lo tanto no es posible
ejecutarlo en contenedores, sí se dockerizaron todos los componentes restantes
(backend, crawlers y módulo ETL).

Cada uno se encapsuló en su propio contenedor, lo que permitió desarrollar y probar
los servicios de forma aislada, reducir errores derivados de diferencias de entorno y
facilitar la integración continua mediante pipelines automatizados.

Una de las principales ventajas fue la posibilidad de generar imágenes
preconstruidas, libres de claves o secretos, y publicarlas directamente en un
container registry. Esto agilizó las pruebas en la nube y estableció una base sólida
para una futura orquestación con Kubernetes u otra solución escalable.

Planificación de pruebas
El backend de SaveApp expone su funcionalidad mediante resolvers GraphQL que
encapsulan reglas de negocio, autorizaciones y composición de datos. Dado que la app
móvil y módulos internos dependen de respuestas consistentes y normalizadas, este plan
prioriza pruebas unitarias a nivel de resolver para capturar rápidamente regresiones lógicas,
contratos de datos y manejo uniforme de errores. La estrategia se apoya en mocks de
modelos y utilidades para aislar la lógica del resolver, y complementa con pruebas “Pop”
que validan la normalización (por ejemplo, convertir bankId en un objeto bank). Aunque no
sustituye pruebas de integración, este enfoque ofrece alto feedback a bajo costo y guía la
calidad desde el núcleo de negocio.

Alcance y componentes bajo prueba

Este plan cubre las operaciones críticas de recuperación, mutación y población de
entidades principales (usuarios, marcas, categorías, bancos, tarjetas, comercios y
seguimientos de ofertas). Se incluye además la familia de resolvers “Pop”, cuyo rol es
entregar estructuras listas para consumo de UI sin joins posteriores. Así, se valida tanto el
“qué” (reglas) como el “cómo” (formato de salida).

77

Informe de Proyecto Final

Resolvers cubiertos

●​ User: UserResolver, PopUserResolver, populateUser
●​ Brand: BrandResolver
●​ Category: CategoryResolver
●​ Bank: BankResolver
●​ Card: CardResolver, PopCardResolver, populateCard
●​ Store: StoreResolver
●​ Tracking: TrackingResolver, PopTrackingResolver, populateTracking

Tipos de pruebas: Unitarias con mocks de @saveapp-org/shared/models, utilidades y
decoradores de caché.

Entorno de pruebas

Las pruebas se ejecutan con Jest, elegido por su rapidez, watch mode y ecosistema
maduro. El aislamiento se logra moqueando modelos Mongoose/Typegoose, utilidades
comunes (fechas, toPlainObject) y decoradores de caché, de modo que cada spec
evalúa exclusivamente la lógica del resolver. Los datos de prueba se gestionan con
fixtures/factories por entidad para mejorar legibilidad y evitar coupling entre casos. La
autenticación se simula con context.user, permitiendo ejercitar rutas de autorización sin
depender de un proveedor real.

●​ Framework: Jest
●​ Aislamiento: Mocks para Model de Mongoose/Typegoose, utilidades

(toPlainObject, fechas) y decoradores de caché.
●​ Datos: Objetos mock por entidad (User, Brand, Card, Offer, Tracking, Store).
●​ Autenticación: Contexto GraphQL simulado mediante context.user.

Supuestos y dependencias

Se asume que los modelos respetan contratos básicos (devuelven documento, null o
error) y que toPlainObject elimina acoplamientos a Mongoose, dejando POJOs aptos
para serialización. Los decoradores de caché se tratan como una optimización que no
cambia la semántica; por ello se valida su integración superficial. También se explicitan
fallos frecuentes (por ejemplo, cast de ObjectId) para asegurar que burbujean como
errores manejables por la capa superior.

●​ Los modelos devuelven documentos o null/errores siguiendo el contrato simulado.
●​ toPlainObject transforma documentos a objetos planos donde aplica.
●​ Los decoradores de caché no alteran la lógica funcional (se valida integración

superficial).
●​ Los IDs pueden fallar por formato (“Cast to ObjectId failed”) y deben propagarse.

Riesgos conocidos

78

Informe de Proyecto Final

El uso intensivo de mocks puede esconder incompatibilidades con Mongoose real, índices o
hooks no simulados. Además, los paths de error genéricos podrían diferir de producción, y
los escenarios de concurrencia en unit tests son necesariamente sintéticos. Para mitigar, se
sugiere complementar con pruebas de integración (por ejemplo, Mongo en memoria) y
contract tests GraphQL que verifiquen el schema y los códigos de error end-to-end.

●​ Dependencia alta de mocks puede ocultar problemas de integración real.
●​ Paths de error genéricos pueden diferir del comportamiento de producción de

Mongoose.
●​ Escenarios de concurrencia sintéticos (limitados a la lógica del resolver).

Criterios de aceptación

La aceptación se apoya en tres pilares: (1) paths felices devuelven exactamente lo
esperado; (2) errores frecuentes (no autenticado, no encontrado, BD, IDs inválidos) se
manejan de forma uniforme y predecible; (3) los resolvers “Pop” entregan estructuras
normalizadas, reduciendo la carga de transformación en clientes y minimizando
ambigüedades en UI.

●​ Cada query/mutation devuelve el resultado esperado en paths felices.
●​ Cada query/mutation gestiona adecuadamente: no autenticado, recurso no

encontrado, errores de base de datos, IDs vacíos/ inválidos.
●​ Los resolvers “Pop” devuelven estructuras pobladas y normalizadas (p. ej., bank en

vez de bankId).

Cobertura por módulo y casos de prueba

Esta sección detalla, por módulo, el propósito, los comportamientos esperados y los casos
de prueba cubiertos, con conectores y justificaciones de diseño para facilitar trazabilidad
con requisitos y criterios de aceptación.

●​ User

Propósito y encuadre:
El módulo de usuario concentra autorización contextual, gestión del perfil y la
orquestación de relaciones con tarjetas, marcas, ofertas guardadas y trackings. Las
pruebas buscan garantizar: (i) lectura segura del usuario autenticado, (ii)
consistencia de mutaciones (agregar/quitar dependencias) y (iii) resiliencia ante
contextos inválidos y errores de base.

Lectura y población:
me retorna el usuario autenticado; si falta context.user, corresponde
UNAUTHENTICATED; si el documento no existe, NOT_FOUND('User'). La utilidad
populateUser entrega payload coherente para la UI: debe poblar cards,
favourites, trackings y savedOffers en un usuario y en arreglos; cualquier
error de populate se propaga.

79

Informe de Proyecto Final

Mutaciones y reglas de negocio.

-​ Tarjetas: addCard exige autenticación, existencia de user y card, y evita
duplicados (ALREADY_ADDED('Card')). removeCard retorna éxito o
NOT_FOUND('User') si no se actualizó el documento.

-​ Marcas favoritas: addFavourite valida existencia (NOT_FOUND('Brand'));
removeFavourite requiere autenticación.

-​ Ofertas guardadas: addSavedOffer retorna NOT_FOUND('Offer') o
ALREADY_ADDED('Offer'); removeSavedOffer exige autenticación.

-​ Trackings: addTracking delega en
TrackingResolver.createTracking y luego puebla; removeTracking
informa NOT_FOUND('Tracking for this offer') si no existe.

-​ Perfil: updateMe soporta actualizaciones parciales; retorna null si el
usuario no se encuentra.

Robustez y bordes:
IDs vacíos son rechazados explícitamente; context nulo/indefinido dispara fallas
claras; errores de conexión/BD burbujean.

Casos cubiertos (síntesis):
-​ populateUser (único/array/errores)
-​ me (OK/UNAUTHENTICATED/NOT_FOUND/errores BD)
-​ Mutaciones (add/removeCard, add/removeFavourite,

add/removeSavedOffer, add/removeTracking, updateMe)
-​ Edges (contexto nulo, IDs vacíos, errores BD transversales).

●​ PopUser

Propósito y encuadre:
PopUserResolver entrega el mismo usuario con relaciones pobladas, eliminando
joins en el cliente.

Comportamiento esperado:
mePop retorna, si hay autenticación, un usuario con cards, favourites,
trackings y savedOffers poblados. Sin contexto: UNAUTHENTICATED. Si no
existe: NOT_FOUND('User'). Errores de populate: se propagan.

Casos cubiertos (síntesis):
-​ mePop (autenticado con relaciones pobladas / UNAUTHENTICATED /

NOT_FOUND / errores de populate).

●​ Brand

Propósito y encuadre:
El resolver de marca atiende (i) búsqueda por ID y (ii) un campo derivado sensible al
contexto de usuario: isFavouritedByUser.

80

Informe de Proyecto Final

Búsqueda por ID:
getBrandById retorna la marca o NOT_FOUND('Brand'). Casts inválidos, IDs
vacíos/extremos, errores BD, concurrencia y timeouts se validan para mantener
determinismo y propagación correcta.

Campo derivado isFavouritedByUser:
Con usuario autenticado, retorna true si la marca está en user.favourites; de
lo contrario, false. Sin autenticación o sin context.user: null. Se contemplan
usuario inexistente (NOT_FOUND('User')), arrays malformados (tratar como no
favorito), errores de BD y excepciones de equals, todo sin colapsar el flujo.

Casos cubiertos (síntesis):
-​ getBrandById (OK/NOT_FOUND/cast inválido/errores/IDs

extremos/concurrencia/timeouts)
-​ isFavouritedByUser (true/false/null, NOT_FOUND('User'), arrays

malformados, errores BD, equals lanza, brand sin _id).

●​ Category

Propósito y encuadre:
Las categorías estructuran el catálogo; se exige predictibilidad ante vacíos y errores.

Listados y búsqueda:
getAllCategories devuelve la lista o []; errores BD se propagan.
getCategoryById retorna la categoría o NOT_FOUND('Category'); cast inválido y
errores BD están contemplados.

Casos cubiertos (síntesis):
-​ getAllCategories (OK/vacío/errores BD)
-​ getCategoryById (OK/NOT_FOUND/cast inválido/errores BD).

●​ Bank

Propósito y encuadre:
Se validan (i) operaciones de lectura (listado y por ID) y (ii) la integración del
decorador de caché como optimización no-semántica.

Caché como optimización:
El decorador debe estar aplicado, invocar al método original y permitir que los
errores burbujeen; no cambia contratos.

Listados y detalle:
getAllBanks devuelve lista o []; getBankById retorna documento o
NOT_FOUND('Bank'). Casts inválidos y errores BD se verifican, incluyendo la
propagación en BankModel.findById directo.

Casos cubiertos (síntesis):

81

Informe de Proyecto Final

-​ Decorador de caché (aplicado/llama al original/propaga errores)
-​ getAllBanks (OK/vacío/errores BD)
-​ getBankById (OK/NOT_FOUND/cast inválido/errores BD incl. llamada

directa).

●​ Card

Propósito y encuadre:
Las tarjetas conectan usuarios con bancos y beneficios; se prueba la normalización
estructural y la variedad de consultas, además de la exposición Pop para la UI.

Población y normalización (populateCard):
Una card poblada convierte bankId → bank y elimina bankId. Debe funcionar en
documento único y en arreglos; un arreglo vacío conserva []. Errores de populate
se propagan.

Consultas y Pop resolvers:
CardResolver: getAllCards (lista/vacío/errores), getCardById
(OK/NOT_FOUND('Card')/cast inválido/errores BD), getCardsByBank(bankId)
(filtra por banco; tolera null/undefined → []; bancos inexistentes y volumen alto
quedan en recomendaciones).​
PopCardResolver: getAllPopCards y getPopCardById verifican población
correcta y errores propagados; myCards(context) exige autenticación, retorna
tarjetas pobladas, y contempla UNAUTHENTICATED, NOT_FOUND('User'), errores
BD y contexto nulo/indefinido.

Casos cubiertos (síntesis):
-​ populateCard (bankId→bank, arrays, [], errores)
-​ getAllCards
-​ getCardById
-​ getCardsByBank (incluye null/undefined → []) · getAllPopCards ·

getPopCardById
-​ myCards (autenticado/UNAUTHENTICATED/NOT_FOUND('User')/errores

BD/contexto nulo).

●​ Store

Propósito y encuadre:
Comercios presentan datos opcionales y gran variabilidad; se evalúan entradas
inválidas y escenarios operativos adversos (red, memoria, autenticación a Mongo).

Búsqueda por ID con diversidad de entradas:
getStoreById retorna el documento o NOT_FOUND('Store'). Se validan IDs
vacíos (''), null/undefined, casts inválidos, IDs extremadamente largos o con
caracteres especiales, e invocaciones sucesivas con distintos IDs, preservando el
contrato.

82

Informe de Proyecto Final

Errores, concurrencia y consistencia:
Errores BD, timeouts de red, conexión/autenticación a Mongo, presión de memoria y
errores personalizados se propagan; múltiples instancias del resolver y concurrencia
mantienen determinismo.

Datos mínimos, completos y opcionales:
Se prueba que documentos mínimos/completos y campos opcionales
nulos/indefinidos/'' no rompan el flujo, entregando payload utilizable por la UI.

Casos cubiertos (síntesis):
getStoreById (OK/NOT_FOUND/cast inválido/IDs
vacíos-extremos/falsy/undefined desde findById/invocaciones
sucesivas/múltiples instancias) · Errores (BD, red/timeout, conexión/auth Mongo,
memoria, personalizados) · Datos (mínimo/completo/opcionales nulos) · Garantías
(propagación, firma consistente, determinismo bajo concurrencia).

●​ Tracking

Propósito y encuadre:
El módulo de tracking habilita seguir ofertas en el tiempo, calcular vigencia y
entregar datos normalizados para la UI. Las pruebas cubren: (i) normalización y
población (populateTracking y populateOffer), (ii) reglas de negocio en
TrackingResolver (creación, eliminación y determinación de vigencia) y (iii)
entrega a cliente en PopTrackingResolver (colecciones pobladas y consistentes
con activos/inactivos).

Población y normalización (populateTracking / populateOffer):
Se valida el mapeo de claves foráneas: si offerId llega poblado, se mueve a
offer y se elimina offerId. Aplica a un tracking y a arreglos (entrada [] conserva
[]). Se comprueba que TrackingModel.populate reciba [{ path:
'offerId' }] y que luego populateOffer sea invocado por cada elemento.
Cualquier error en la población de offerId o del propio populateOffer se
propaga sin silenciarse.

Lógica de negocio del resolver (TrackingResolver):
createTracking(offerId) recupera la oferta, obtiene refundTerm y calcula
startDate/endDate con currentDate() y getEndDate(refundTerm). Se
cubre el path feliz y las precondiciones: oferta inexistente ⇒
NOT_FOUND('Offer'); refund term faltante/nulo/0 ⇒ NOT_FOUND('Refund
term'). Además, errores operativos (p. ej., timeouts en la selección) deben disparar
la excepción. En concurrencia, múltiples invocaciones producen resultados
consistentes (también se verifica el conteo de findById).​
deleteTracking(id) expone un contrato booleano: true si elimina; false si no
existe o el ID es vacío; errores de base (incluida presión de memoria simulada)
burbujean.​

83

Informe de Proyecto Final

isActive(tracking) delega en isActiveDate(endDate); debe funcionar con
fechas futuras/pasadas y con endDate nulo sin lanzar excepciones.

Entrega a la UI (PopTrackingResolver):
myTrackedOffers(context) retorna trackings poblados con offer cuando hay
autenticación. Sin usuario en contexto: UNAUTHENTICATED. Si el usuario no
existe: NOT_FOUND('User'). Usuario sin trackings: []. Se contabilizan invocaciones
a populateOffer para asegurar una por tracking. Errores en findById →
populate → select se propagan; contextos malformados (objeto sin user o
context undefined) deben fallar explícitamente.​
isActive en PopTrackingResolver mantiene idéntico comportamiento al de
TrackingResolver.

Casos cubiertos (síntesis):
-​ populateTracking/populateOffer: mapeo offerId→offer,

eliminación de offerId, arrays (no vacío y []),
TrackingModel.populate({ path: 'offerId' }), populateOffer
1×elemento.

-​ createTracking: éxito con refundTerm → startDate/endDate;
NOT_FOUND('Offer'); NOT_FOUND('Refund term') ante
ausencia/null/0; timeout en selección lanza; concurrencia consistente.

-​ deleteTracking: true si elimina; false si no existe o ID vacío; errores
BD (incl. "heap out of memory").

-​ isActive: usa isActiveDate(endDate); maneja endDate nulo;
escenarios de fecha futura y pasada.

-​ myTrackedOffers: autenticado OK (trackings poblados);
UNAUTHENTICATED; NOT_FOUND('User'); sin trackings → []; errores
propagan; conteo de populateOffer proporcional al número de trackings.

Matriz de cobertura frente a requisitos esperados

Se asegura trazabilidad con requisitos operativos: autenticación, búsqueda por ID, listados,
relaciones pobladas, manejo de errores, concurrencia y campos derivados. Esta matriz
permite detectar huecos y priorizar refuerzos donde el riesgo es mayor (por ejemplo, errores
de red/auth de Mongo o timeouts).

●​ Autenticación: User, PopUser, PopCard, PopTracking.
●​ Búsqueda por ID: Brand, Category, Bank, Card, Store.
●​ Listados: getAll... en Bank, Card, Category, PopCard (poblado).
●​ Relaciones pobladas: populateUser, populateCard, populateTracking,

resolvers Pop*.
●​ Errores: NOT_FOUND, UNAUTHENTICATED, BD, cast ObjectId, timeouts, memoria,

red/auth Mongo.
●​ Concurrencia: Brand, Store, Tracking.

84

Informe de Proyecto Final

●​ Derivados/normalización: isActive, bankId → bank, offerId → offer.

Criterios de salida

El plan define salida clara para evitar scope creep: todas las unitarias vigentes deben pasar,
no deben quedar casos críticos sin cubrir en los resolvers actuales y los mensajes de error
deben ser consistentes con ERRORS. Esto habilita merge seguro y reduce el costo de
mantenimiento.

●​ Todas las pruebas unitarias existentes pasan.
●​ No hay casos faltantes críticos respecto a los resolvers actuales.
●​ Errores y mensajes consistentes con ERRORS.

Recomendaciones de pruebas adicionales

Como cierre, se proponen extensiones para robustecer áreas de riesgo: duplicados y parity
de errores en User, escenarios de rendimiento (listas grandes en Brand y Card),
validación real de cache en Bank, bordes temporales en Tracking y contract tests
GraphQL para asegurar esquema y permisos end-to-end.

●​ User: addFavourite/addSavedOffer con UNAUTHENTICATED y duplicados;
paridad de errores BD en todas las mutations.

●​ Brand: rendimiento con favourites masivo.
●​ Bank: validar cache hit/miss real si se habilita caché efectiva.
●​ Card: getCardsByBank con banco inexistente y alto volumen.
●​ Tracking: fechas con zonas horarias y bordes de mes.
●​ Integración: Contract tests schema.graphql y permisos (p.ej.,

permissions.ts).

Prácticas operativas (sugeridas para el informe)

●​ Gestión de datos de prueba: Factories por entidad, fixtures mínimas y reutilizables,
y helpers para context.user.

●​ Métricas y umbrales: Coverage objetivo (p.ej., 85% líneas/ramas en resolvers),
reporte en CI y gating en PR.

●​ Nomenclatura y estructura: resolverName.spec.ts con secciones happy path,
errors y edges; mocks en __mocks__.

●​ CI/CD: ejecución paralela, watch local, y pre-commit hook para suites rápidas.
●​ Mitigación de riesgos: una smoke de integración con Mongo en memoria y contract

tests periódicos para alinear errores y schema.

85

Informe de Proyecto Final

Pruebas de carga y estrés

Para las pruebas de carga y estrés del backend de SaveApp se utilizó el Runner de
Postman ejecutando collections de GraphQL contra el endpoint /graphql. Las colecciones
se organizaron por flujo (lecturas, escrituras y resolvers “Pop”), con ambientes para
baseUrl/token y archivos de datos (CSV/JSON) que parametrizan operationName,
query y variables. Se emplearon pre-request scripts (generación/renovación de
credenciales y correlation-id) y test scripts (registro de latencias y errores). La
concurrencia se emuló lanzando múltiples Runners en paralelo con ramp-up y think time
variable.

Alcance

●​ Queries: me, mePop, getAllBanks, getBankById, getBrandById,
getAllCategories, getCategoryById, getAllCards, getCardById,
getAllPopCards, getPopCardById, getStoreById, myTrackedOffers.

●​ Mutations: addCard, removeCard, addFavourite, removeFavourite,
addSavedOffer, removeSavedOffer, addTracking, deleteTracking,
updateMe.

Metodología

●​ Diseño de colecciones por tipo de flujo (lectura pesada, escritura/actualización,
“Pop”).

●​ Datasets con usuarios, IDs y combinaciones de filtros/variables para generar
variabilidad de payloads.

●​ Concurrencia por paralelización de Runners con arranque escalonado (ramp-up),
think time aleatorio y tamaños de payload distintos.

●​ Validaciones en test scripts para registrar tiempos, respuestas GraphQL y códigos
de error del resolver.​

Escenarios ejercitados

●​ Lectura concurrente: ráfagas y mesetas sobre me/mePop, getAll* y búsquedas
por ID; los resolvers “Pop” fuerzan población y payloads mayores.

●​ Escrituras concurrentes: oleadas de add/removeCard,
add/removeFavourite, add/removeSavedOffer, add/deleteTracking,
updateMe para observar contención, validaciones e idempotencia lógica.

●​ Mix realista de tráfico: patrón read-heavy con mutations intercaladas; contraste
bursty (picos cortos) vs steady (carga sostenida) para evaluar degradación y
recuperación.

86

Informe de Proyecto Final

Conclusiones

Se definió utilizar el Runner de Postman porque permite correr carga real sobre el mismo
contrato GraphQL que usa la app, con bajo costo de orquestación y reproducibilidad:
reutilizamos colecciones del equipo, variamos datos sin infra adicional y golpeamos el stack
completo (middlewares, resolvers, DB, caché). Es ideal para ciclos rápidos de “cambiar →
medir → decidir” y para comparar perfiles de carga entre ramas/configuraciones.

Esta configuración nos permitió caracterizar el perfil de carga de cada resolver, anticipar el
comportamiento en producción y preparar estrategias de escalado vertical si el límite es
CPU/memoria del proceso u horizontal si el cuello está en concurrencia o latencia externa
(DB/red).

En conjunto, la estrategia de verificación consolidada refleja el recorrido del equipo, las
decisiones ante problemas reales y elecciones tecnológicas alineadas con una visión de
producto escalable y sostenible. El resultado es un backend robusto y personalizable para el
mercado argentino, con base sólida para su extensión a toda la región latinoamericana.

87

Informe de Proyecto Final

BENEFICIOS POST-IMPLEMENTACIÓN
La implementación de SaveApp representa una transformación significativa en la manera en
que los usuarios acceden, comprenden y utilizan los beneficios asociados a sus tarjetas
bancarias. A través de una solución integral, automatizada y centrada en el usuario, los
beneficios esperados tras la puesta en funcionamiento del sistema abarcan tanto el plano
individual del consumidor como el ecosistema financiero en su conjunto. A continuación, se
detallan los principales beneficios post-implementación:

Empoderamiento del usuario y educación financiera
SaveApp no solo permite ahorrar dinero, sino también adquirir mayor conciencia sobre el
uso inteligente de los medios de pago. Al visualizar el impacto real de sus decisiones
(descuentos utilizados, reintegros recibidos, ahorro acumulado), el usuario se convierte en
un actor activo y estratégico de su economía personal. Esto contribuye a una mejora en la
salud financiera, al fomentar decisiones informadas y conscientes.

Acceso unificado a la información
Una de las principales problemáticas antes de SaveApp era la dispersión y dificultad de
acceso a las promociones bancarias. Gracias a su sistema de scraping y análisis semántico,
SaveApp centraliza la información de múltiples entidades en un solo lugar, eliminando la
necesidad de recorrer distintos sitios o interpretar condiciones confusas. A diferencia de los
modelos basados en crowdsourcing, que suelen sufrir cobertura incompleta, sesgos de
participación, latencias (demoras en la carga/actualización), ruido y duplicados, además de
riesgos de spam/manipulación y mayores costos de moderación y verificación, el enfoque
automatizado proporciona actualizaciones sistemáticas, trazabilidad de origen (cada dato se
vincula a su fuente oficial), normalización canónica de formatos y criterios homogéneos de
interpretación. El resultado es una experiencia más confiable, fluida y efectiva; el feedback
de usuarios puede usarse como señal complementaria para detectar anomalías, pero la
fuente de verdad permanece en los datos verificados y capturados automáticamente desde
los sitios oficiales.

Aumento en la utilización de promociones existentes
Muchas promociones bancarias no se aprovechan simplemente porque los usuarios no las
conocen. Al ofrecer notificaciones contextuales en el momento y lugar adecuado, la app
incrementa la tasa de utilización de beneficios ya disponibles. Esto representa un mayor
valor real para el usuario, sin necesidad de cambiar hábitos de consumo ni contratar
servicios adicionales. [1]

Automatización de tareas repetitivas y tediosas
Tareas como revisar manualmente sitios de bancos, comparar descuentos, calcular topes
de reintegro o validar condiciones específicas son automatizadas por la app mediante IA.

88

Informe de Proyecto Final

Esto ahorra tiempo, reduce errores de interpretación y libera al usuario de una carga
cognitiva innecesaria.

Mejora en la experiencia de usuario frente a apps
tradicionales
Frente a billeteras o apps bancarias que muchas veces no priorizan la experiencia de
usuario, SaveApp se presenta como una herramienta moderna, intuitiva y amigable. Desde
su navegación fluida hasta el uso de IA conversacional, el diseño centrado en el usuario
genera mayor engagement, satisfacción y fidelidad.

Transparencia y trazabilidad de beneficios
Con el módulo de seguimiento de reintegros y el panel de ahorro acumulado, SaveApp
otorga al usuario la capacidad de auditar y verificar el cumplimiento de las promociones.
Esta transparencia refuerza la confianza en las entidades emisoras y en la plataforma
misma.

Escalabilidad regional y replicabilidad del modelo
El diseño desacoplado, el scraping adaptable y el análisis semántico genérico permiten que
SaveApp pueda ser extendido fácilmente a otros países de la región. Esto multiplica su
impacto potencial y posiciona al sistema como una solución escalable más allá del caso
argentino.

Valor estratégico para bancos y comercios
Indirectamente, SaveApp también representa una oportunidad para los bancos emisores y
los comercios adheridos: al aumentar la visibilidad y uso de promociones, se incrementa el
volumen de transacciones, se fideliza a los clientes y se optimiza el retorno de las
campañas promocionales. En el futuro, la app podría incluso integrarse con estos actores
para potenciar alianzas estratégicas.

Base para funcionalidades futuras
La arquitectura modular de SaveApp, con captura automática de beneficios, análisis
semántico y API GraphQL de mono-endpoint, permite que la app evolucione de “ahorro
para usuarios” a una herramienta importante para bancos y comercios, complementando
sus canales existentes sin cambiar sus procesos internos.

●​ Medición de efectividad de promociones: SaveApp cierra el loop entre impresión
→ interés → visita → uso declarado/reintegro esperado, generando KPIs como tasa
de visualización y de uso por banco, tarjeta, rubro, local, zona y franja horaria.
Permite atribución de campañas, detección de canibalización/saturación, análisis de
cohortes y experimentación A/B con reglas simples (como vigencia, tope, días). Todo
bajo privacy-by-design, sin datos sensibles, con seudonimización y consentimiento.

89

Informe de Proyecto Final

●​ Recomendaciones y promociones personalizadas: El motor de ranking combina
afinidad (historial y preferencias), contexto (geolocalización y horario) y probabilidad
de uso, para mostrar solo lo relevante y proponer bonificaciones dinámicas (como
por ejemplo “martes sin tope en tu zona”) que maximizan el lift por segmento.

●​ Espacio de promoción para locales: A largo plazo, SaveApp puede ofrecer un
portal para comercios y bancos que permita carga de promos, promociones
destacadas etiquetadas, segmentación por radio/horarios y presupuesto controlado,
con límites de frecuencia y reportes en tiempo real.

En conjunto, esto posiciona a SaveApp como plataforma viva que entrega valor medible, los
bancos incrementan el uso de sus tarjetas, los comercios ganan tráfico incremental y los
usuarios reciben ahorros pertinentes sin fricción.

Inclusión digital y democratización del ahorro
SaveApp permite que cualquier persona con un smartphone, incluso sin conocimientos
técnicos o financieros avanzados, pueda acceder a información clara, personalizada y
accionable sobre sus beneficios. Esto democratiza el acceso al ahorro y promueve la
inclusión financiera, cerrando brechas de conocimiento y aprovechamiento entre distintos
segmentos de la población.

90

Informe de Proyecto Final

IMPACTOS
La implementación de SaveApp genera un impacto integral en múltiples dimensiones del
ecosistema digital, financiero y social. A través de su enfoque centrado en la
automatización, la personalización y el empoderamiento del usuario, se esperan
repercusiones concretas a nivel económico, social, ambiental y tecnológico.

Impacto Económico
Ahorro directo para los usuarios

Uno de los beneficios más tangibles de SaveApp es el ahorro monetario real que genera
para sus usuarios. Al centralizar, clasificar y notificar promociones que de otro modo
pasarían desapercibidas, la aplicación permite que cada persona optimice su poder
adquisitivo.

Mayor efectividad en campañas bancarias y comerciales

Para bancos emisores de tarjetas y comercios adheridos, SaveApp incrementa el retorno
sobre la inversión de sus campañas de beneficios. Al facilitar el acceso y comprensión de
las condiciones, la tasa de uso de los descuentos mejora considerablemente. Esto se
traduce en mayor volumen de transacciones, fidelización del cliente y un uso más inteligente
del presupuesto promocional.

Estímulo a la economía digital

La aplicación fomenta el uso de medios de pago electrónicos y herramientas digitales. Este
hábito beneficia la formalización de la economía, reduce el uso de efectivo y potencia la
trazabilidad de las transacciones, un aspecto fundamental para la evolución del sistema
financiero nacional.

Reducción de costos operativos

Al automatizar la obtención, análisis y presentación de beneficios, se eliminan tareas que
tradicionalmente requerían intervención humana o inversiones en call centers, newsletters y
materiales gráficos. Esto genera eficiencia no solo para los usuarios, sino también para
bancos, fintechs y comercios.

Impacto Social
Inclusión financiera y digital

SaveApp promueve la democratización del acceso a la información financiera, facilitando
que personas con baja alfabetización digital o bancaria comprendan y aprovechen
beneficios disponibles. Al traducir el lenguaje técnico en información simple, personalizada y
contextual, reduce barreras de entrada al sistema financiero formal y fomenta mayor
participación económica.

91

Informe de Proyecto Final

Reducción de la asimetría de información

La oferta de beneficios suele presentarse dispersa y con términos complejos. SaveApp
funciona como mediador tecnológico entre el ciudadano y las instituciones: integra fuentes,
normaliza condiciones y simplifica términos y restricciones, brindando transparencia y
mejorando la capacidad del usuario para comparar opciones y reclamar cuando
corresponde.

Dimensión solidaria y comunitaria

En articulación con Fundación Effetá, la app incorpora un módulo de donaciones voluntarias
para canalizar parte de los ahorros hacia programas educativos y sociales. El ahorro
individual se convierte así en impacto colectivo, fortaleciendo el entramado comunitario y el
fin social del proyecto.

SaveApp integra docencia, extensión e investigación alrededor de un problema social
concreto y prioriza el impacto social dentro de las áreas de RSU de la UCC [1].

Impacto Medioambiental
Disminución del uso de materiales impresos

Tradicionalmente, muchos beneficios y promociones eran comunicados a través de folletos,
cartelería o tickets impresos. La digitalización total de esta información mediante SaveApp
reduce la necesidad de imprimir materiales, lo que tiene un impacto directo en la reducción
del consumo de papel y tinta.

Optimización de desplazamientos

Al permitirle al usuario planificar sus compras con antelación y según ubicación, la app
reduce desplazamientos innecesarios, evitando viajes duplicados o recorridos ineficientes.
Esto contribuye indirectamente a la reducción de la huella de carbono asociada al transporte
urbano.

Promoción del consumo digital responsable

SaveApp hace visibles promociones antes dispersas y potencia su aprovechamiento. Dado
que la mayoría de estos beneficios se activan con medios de pago digitales o tarjetas, la
app desalienta el uso de efectivo y elimina tickets y vouchers impresos. El resultado es una
economía más desmaterializada que, desde la tecnología, contribuye a la sostenibilidad
ambiental al reducir materiales, traslados y residuos asociados a soportes físicos.

92

Informe de Proyecto Final

CONCLUSIONES
La construcción de SaveApp representa mucho más que el desarrollo de una simple
aplicación móvil: se trata de un proceso integral que articula necesidades reales del entorno
financiero argentino, tecnologías de vanguardia, metodologías de diseño centradas en el
usuario y una visión estratégica de impacto. A través del recorrido de este Proyecto
Integrador, se logró transformar una problemática cotidiana —la dispersión, complejidad y
desaprovechamiento de promociones bancarias— en una oportunidad concreta de mejora a
nivel individual, social, económico y tecnológico.

Durante las distintas etapas del proyecto, desde la conceptualización inicial hasta la
validación funcional de los módulos desarrollados, se confirmaron múltiples hipótesis clave:

●​ Que existe una gran cantidad de beneficios disponibles que no son aprovechados
por desconocimiento o falta de acceso claro.[1]

●​ Que es posible automatizar la recolección, interpretación y contextualización de esta
información mediante scraping, inteligencia artificial y geolocalización.

●​ Que una interfaz bien diseñada, acompañada de funcionalidades inteligentes, puede
cambiar radicalmente la forma en que las personas se relacionan con sus finanzas
cotidianas.

●​ Que el desarrollo de tecnología de impacto no requiere necesariamente grandes
estructuras corporativas, sino visión, metodología y compromiso.

El sistema desarrollado demuestra la capacidad de generar valor real: mejora la toma de
decisiones del consumidor, reduce la fricción para aprovechar promociones, democratiza el
acceso a la información financiera y posiciona al usuario como protagonista activo de su
ahorro.

Desde el punto de vista técnico, el proyecto implicó enfrentar y superar desafíos relevantes,
como la falta de estándares abiertos en Argentina (Open Banking), la necesidad de extraer
informacion de textos legales ambiguos, o las limitaciones impuestas por plataformas
móviles como iOS en cuanto a PWA. Cada decisión tecnológica tomada fue evaluada,
justificada y alineada con los objetivos funcionales del sistema.

Desde el punto de vista metodológico, se aplicaron criterios de arquitectura modular,
desarrollo iterativo y enfoque en la escalabilidad, lo que habilita a SaveApp no solo a
cumplir su propósito actual, sino a evolucionar hacia nuevas funcionalidades y mercados.

Como resultado, se construyó una plataforma robusta, extensible y con una propuesta de
valor diferenciadora: inteligencia financiera accesible para todos. Una herramienta que, sin
depender de bancos, sin almacenar datos sensibles y sin exigir grandes conocimientos
técnicos, permite al usuario común tomar decisiones informadas y beneficiarse de algo que
ya le pertenece: sus descuentos.

93

Informe de Proyecto Final

ANEXOS
A continuación se incluyen materiales relevantes para la comprensión, validación y
reproducción del proyecto. Estos anexos complementan y respaldan los resultados
presentados en el cuerpo principal del informe, y ofrecen una base sólida para la
continuidad y evolución futura del proyecto SaveApp.

Bibliografía y Fuentes Consultadas
●​ Documentación oficial de tecnologías utilizadas:

○​ Flutter - https://docs.flutter.dev
○​ FlutterFlow - https://docs.flutterflow.io
○​ GraphQL - https://graphql.org/learn
○​ MongoDB - https://www.mongodb.com/docs
○​ Gemini API (Google AI) - https://ai.google.dev/gemini-api/docs
○​ PromptLayer - https://docs.promptlayer.com
○​ Firebase - https://firebase.google.com/docs

●​ Sitios oficiales de bancos argentinos relevados para el análisis de beneficios:

○​ Ualá - https://www.uala.com.ar/
○​ Burbank - https://www.brubank.com/
○​ NaranjaX - https://www.naranjax.com/
○​ Macro - https://www.macro.com.ar/
○​ Santander - https://www.santander.com.ar/personas
○​ Galicia - https://www.galicia.ar/personas

●​ Fuentes consultadas sobre las problemáticas mencionadas:

1.​ CreditCards.com & YouGov. (2023). Survey on unredeemed rewards.
https://www.creditcards.com/statistics/unused-credit-card-rewards-poll}

2.​ CardRates. (2025). Statistics on unused credit card rewards.
https://www.cardrates.com/news/credit-card-reward-redemption-statistics

3.​ J.D. Power. (2025). U.S. Credit Card Satisfaction Study. The Financial Brand.
https://thefinancialbrand.com/news/payments-trends/card-satisfaction-muted-
by-surcharges-rewards-confusion-and-debt-levels-192110

4.​ Clarion Ledger. (2018). Credit card rewards programs confuse Americans;
many leaving money on the table.
https://www.clarionledger.com/story/news/2018/04/20/credit-card-rewards-pro
grams-confuse-americans-many-leaving-money-table/530623002

5.​ El Economista. (2023). Conozca los beneficios de su tarjeta de crédito.
https://www.eleconomista.com.mx/finanzaspersonales/Cual-es-la-tarjeta-de-c
redito-que-mas-te-conviene-20230619-0087.html

94

https://docs.flutter.dev
https://docs.flutterflow.io
https://graphql.org/learn
https://www.mongodb.com/docs
https://ai.google.dev/gemini-api/docs
https://docs.promptlayer.com
https://firebase.google.com/docs
https://www.uala.com.ar/promociones
https://www.brubank.com/
https://www.naranjax.com/
https://www.macro.com.ar/
https://www.santander.com.ar/personas
https://www.galicia.ar/personas
https://www.creditcards.com/statistics/unused-credit-card-rewards-poll
https://www.cardrates.com/news/credit-card-reward-redemption-statistics
https://thefinancialbrand.com/news/payments-trends/card-satisfaction-muted-by-surcharges-rewards-confusion-and-debt-levels-192110
https://thefinancialbrand.com/news/payments-trends/card-satisfaction-muted-by-surcharges-rewards-confusion-and-debt-levels-192110
https://www.clarionledger.com/story/news/2018/04/20/credit-card-rewards-programs-confuse-americans-many-leaving-money-table/530623002
https://www.clarionledger.com/story/news/2018/04/20/credit-card-rewards-programs-confuse-americans-many-leaving-money-table/530623002
https://www.eleconomista.com.mx/finanzaspersonales/Cual-es-la-tarjeta-de-credito-que-mas-te-conviene-20230619-0087.html
https://www.eleconomista.com.mx/finanzaspersonales/Cual-es-la-tarjeta-de-credito-que-mas-te-conviene-20230619-0087.html

Informe de Proyecto Final

6.​ Comisión Nacional para la Protección y Defensa de los Usuarios de Servicios
Financieros (CONDUSEF). (2023). Proteja su Dinero – Beneficios de la
tarjeta.
https://revista.condusef.gob.mx/credito/2023/05/beneficios-al-pagar-con-tu-td
c

7.​ Consumer Reports. (2022). Beneficios ocultos de las tarjetas de crédito.
https://www.consumerreports.org/es/dinero/tarjetas-de-credito/beneficios-de-t
arjetas-que-no-conozcas-a1208189105

8.​ La FM. (2023). Beneficios de las tarjetas de crédito que los usuarios
desconocen.
https://www.lafm.com.co/economia/tarjeta-de-credito-los-beneficios-que-much
os-no-conocen

9.​ Chócale. (2025). Errores comunes al usar la tarjeta de crédito.
https://chocale.cl/2025/03/las-trampas-y-errores-al-usar-mal-las-tarjetas-de-cr
edito

10.​Semana. (2023). Los beneficios de la tarjeta de crédito que pocos utilizan.
https://www.semana.com/finanzas/consumo-inteligente/articulo/los-10-benefic
ios-en-su-tarjeta-de-credito-que-poco-o-nunca-utiliza/202304

95

https://revista.condusef.gob.mx/credito/2023/05/beneficios-al-pagar-con-tu-tdc
https://revista.condusef.gob.mx/credito/2023/05/beneficios-al-pagar-con-tu-tdc
https://www.consumerreports.org/es/dinero/tarjetas-de-credito/beneficios-de-tarjetas-que-no-conozcas-a1208189105
https://www.consumerreports.org/es/dinero/tarjetas-de-credito/beneficios-de-tarjetas-que-no-conozcas-a1208189105
https://www.lafm.com.co/economia/tarjeta-de-credito-los-beneficios-que-muchos-no-conocen
https://www.lafm.com.co/economia/tarjeta-de-credito-los-beneficios-que-muchos-no-conocen
https://chocale.cl/2025/03/las-trampas-y-errores-al-usar-mal-las-tarjetas-de-credito
https://chocale.cl/2025/03/las-trampas-y-errores-al-usar-mal-las-tarjetas-de-credito
https://www.semana.com/finanzas/consumo-inteligente/articulo/los-10-beneficios-en-su-tarjeta-de-credito-que-poco-o-nunca-utiliza/202304
https://www.semana.com/finanzas/consumo-inteligente/articulo/los-10-beneficios-en-su-tarjeta-de-credito-que-poco-o-nunca-utiliza/202304

Informe de Proyecto Final

Mockups iniciales (Figma)

96

Informe de Proyecto Final

Pantallas Principales

97

Informe de Proyecto Final

Pantallas Secundarias

98

Informe de Proyecto Final

Enfoque RSU
SaveApp es el trabajo final de grado de tres estudiantes de Ingeniería en Sistemas de la
Universidad Católica de Córdoba (UCC). Se trata de una aplicación móvil con enfoque
fintech que integra web-scraping, geolocalización, inteligencia artificial y un chat asistente
para reunir, simplificar y notificar en tiempo real los descuentos y promociones de comercios
de uso cotidiano como supermercados, farmacias y transporte público.

El proyecto nace como respuesta a una asimetría de información que afecta especialmente
a los sectores con menor alfabetización financiera: las promociones están dispersas en
múltiples canales, redactadas con términos complejos y rara vez disponibles en el punto de
venta. Esta dificultad reduce la posibilidad de ahorrar y genera una pérdida directa de
recursos. SaveApp se propone resolver este problema al procesar la información,
automatizar su procesamiento y comunicársela al usuario justo en el momento de pagar.

SaveApp se desarrolló en colaboración con la Fundación Effetá, organización social
dedicada a la promoción social y educativa. La integración de un módulo de donaciones
permite que los usuarios destinen parte de sus ahorros a fortalecer los programas de la
Fundación, ampliando su alcance comunitario. De este modo, la dimensión solidaria se
convierte en un eje central del proyecto, al transformar el beneficio individual del ahorro en
un recurso sostenible para acciones de impacto social.

El proyecto fue validado por aproximadamente 50 personas que participaron en las
encuestas iniciales, confirmaron la utilidad de la aplicación y expresaron su interés en donar
parte de sus ahorros. Asimismo, se mantuvo contacto con negocios de Córdoba que
manifestaron su interés en visibilizar sus ofertas dentro de la app, fortaleciendo así el
vínculo entre la comunidad académica, el sector comercial y la sociedad.

Esta iniciativa se alinea con el paradigma de Responsabilidad Social Universitaria
promovido por la universidad al integrar docencia, extensión e investigación en el abordaje
de un problema social concreto. SaveApp impacta en las cinco áreas definidas por la
Secretaría de Proyección y RSU de la UCC, priorizando especialmente el impacto social,
aporta un beneficio tangible a la comunidad al permitir un ahorro económico directo,
visibiliza las ofertas de pequeños comercios y canaliza donaciones hacia la Fundación
Effetá.

El enfoque RSU se integra transversalmente en los objetivos y resultados del proyecto,
convirtiendo la innovación tecnológica en un servicio social útil, medible, escalable y con
alto potencial de replicabilidad, en línea con los criterios para su acreditación como Trabajo
Final con Enfoque RSU.

99

	
	ABSTRACT
	
	PRESENTACIÓN DEL TEMA
	
	GLOSARIO
	DIAGNÓSTICO DEL PROBLEMA
	Contexto Actual
	Problemas Identificados
	Oportunidades

	OBJETIVOS
	Objetivo General
	Objetivos Específicos

	
	MARCO TEÓRICO
	Contexto General del Problema
	Clasificación y características de las ofertas
	Análisis de Campo
	Soluciones similares en el mercado
	Tecnologías disponibles
	1. Mobile Backend
	Comunicación entre Cliente y Servidor (APIs)
	REST (Representational State Transfer)
	GraphQL

	Autenticación y Gestión de Sesiones
	JWT (JSON Web Tokens)
	Firebase Authentication
	Supabase Auth
	Auth0
	Better Auth

	Otros
	Mongoose
	Typegoose
	TypeGraphQL

	2. Mobile App
	Arquitecturas Móviles
	Progressive Web Apps (PWA)
	Flutter
	React Native
	Kotlin Multiplatform (KMP)
	Swift y el Ecosistema iOS
	Kotlin y el Ecosistema Android

	Geolocalización y Notificaciones Contextuales
	Geofencing
	Notificaciones Push

	APIs Geoespaciales
	Google Maps Platform
	Places API
	Geocoding API
	OpenStreetMap (OSM)
	Nominatim (Geocoding)
	Overpass API (POIs)

	3. Dashboard y Landing
	Desarrollo Web
	React
	Shadcn
	Next.js (sobre React)
	Astro

	Herramientas de Desarrollo y Build
	Vite
	Django
	FastAPI
	Node.js
	Go (Golang)

	4. Bases de Datos
	PostgreSQL
	MySQL / MariaDB
	MongoDB
	Firebase Firestore
	Redis

	5. ETL y Chatbot
	Extracción de Datos y Automatización (Web Scraping)
	BeautifulSoup
	Scrapy
	Playwright (o Selenium)
	Agentes de IA para Web Scraping (Emergente)

	Procesamiento de Lenguaje Natural (NLP) y Modelos de Lenguaje
	Expresiones Regulares
	Modelos de Lenguaje (LLMs)
	Embeddings y Bases de Datos Vectoriales
	MCP Servers

	Técnicas de Prompting
	Estructuración con Markdown
	One-shot y Few-shot
	Razonamiento (Chain-of-Thought)
	LLM as a Judge
	Structured Output
	Plantillas de system prompt dinámicas
	Tool / Function Calling
	Selección semántica de contexto (RAG ligero)
	Calibración de decodificación

	LLM Gateways
	Vercel AI Gateway
	OpenRouter

	Prompt Management Tools
	PromptLayer
	Helicone
	Langfuse

	6. Cloud
	Plataformas de Despliegue Cloud
	Railway
	Vercel
	Amazon Web Services (AWS)
	Google Cloud Platform (GCP)
	Microsoft Azure
	MongoDB Atlas

	Terraform (Infrastructure as Code)
	Amazon S3 (Simple Storage Service)
	Google Cloud Storage

	Contenerización y Orquestación
	Contenerización (Docker)
	Orquestación de Contenedores (Kubernetes)

	7. CI/CD
	GitHub Actions
	GitLab CI/CD
	Azure DevOps

	PROPUESTA DE SOLUCIÓN
	Introducción general
	Alcance funcional
	Historias de Usuario
	Roles involucrados

	Diseño del sistema
	Arquitectura
	Vista general
	Multirepo y responsabilidades
	SaveApp-Backend:
	SaveApp-Crawlers
	SaveApp-SaCrawl
	SaveApp-Shared (Node.js package)
	SaveApp-Infrastructure
	SaveApp-Dashboard
	SaveApp-Chatbot
	SaveApp-Landing
	SaveApp-Flutterflow

	Pantallas principales [1]​
	Pantallas secundarias [1]

	Implementación
	Módulos del sistema

	Tecnologías utilizadas y justificación
	Planificación de pruebas
	Alcance y componentes bajo prueba
	Entorno de pruebas
	Supuestos y dependencias
	Riesgos conocidos
	Criterios de aceptación
	Cobertura por módulo y casos de prueba
	●​User
	●​PopUser
	●​Brand
	●​Category
	●​Bank
	●​Card
	●​ Store
	●​Tracking

	Matriz de cobertura frente a requisitos esperados
	Criterios de salida
	Recomendaciones de pruebas adicionales
	Prácticas operativas (sugeridas para el informe)
	Pruebas de carga y estrés
	Alcance
	Metodología
	Escenarios ejercitados
	Conclusiones

	BENEFICIOS POST-IMPLEMENTACIÓN
	Empoderamiento del usuario y educación financiera
	Acceso unificado a la información
	Aumento en la utilización de promociones existentes
	Automatización de tareas repetitivas y tediosas
	Mejora en la experiencia de usuario frente a apps tradicionales
	Transparencia y trazabilidad de beneficios
	Escalabilidad regional y replicabilidad del modelo
	Valor estratégico para bancos y comercios
	Base para funcionalidades futuras
	Inclusión digital y democratización del ahorro

	
	IMPACTOS
	Impacto Económico
	Ahorro directo para los usuarios
	Mayor efectividad en campañas bancarias y comerciales
	Estímulo a la economía digital
	Reducción de costos operativos

	Impacto Social
	Inclusión financiera y digital
	Reducción de la asimetría de información
	Dimensión solidaria y comunitaria

	Impacto Medioambiental
	Disminución del uso de materiales impresos
	Optimización de desplazamientos
	Promoción del consumo digital responsable

	
	CONCLUSIONES
	
	ANEXOS
	Bibliografía y Fuentes Consultadas
	
	Mockups iniciales (Figma)
	Pantallas Principales
	Pantallas Secundarias
	
	Enfoque RSU

