Producción Académica UCC

Estrategias estadísticas y de aprendizaje automático en genómica y proteómica funcional

Fernández, Elmer Andrés ORCID: https://orcid.org/0000-0002-4711-8634 and Fresno Rodríguez, Cristóbal (2012) Estrategias estadísticas y de aprendizaje automático en genómica y proteómica funcional. [Proyecto de investigación]

[img] PDF - Versión aceptada
Disponible bajo Licencia CC Atribución-NoComercial-SinDerivadas.

Descargar (92kB)

Resumen

El objetivo de este proyecto, enmarcado en el área de metodología de análisis en bioingeniería-biotecnología aplicadas al estudio del cáncer, es el análisis y caracterización a través de perfiles de expresión de proteínas y genes de las vías metabólicas asociadas a progresión tumoral. Dicho estudio se llevará a cabo mediante la utilización de tecnologías de alto rendimiento. Las mismas permiten evaluar miles de genes/proteínas en forma simultánea, generando así una gran cantidad de datos de expresión. Se hipotetiza que para un análisis e interpretación de la información subyacente, caracterizada por su abundancia y complejidad, podría realizarse mediante técnicas estadístico-computacionales eficientes en el contexto de modelos mixtos y técnicas de aprendizaje automático. Para que el análisis sea efectivo es necesario contemplar los efectos ocasionados por los diferentes factores experimentales ajenos al fenómeno biológico bajo estudio. Estos efectos pueden enmascarar la información subyacente y así perder informacion relevante en el contexto de progresión tumoral. La identificación de estos efectos permitirá obtener, eficientemente, los perfiles de expresión molecular que podrían permitir el desarrollo de métodos de diagnóstico basados en ellos. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, herramientas y procedimientos de análisis que maximicen la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos/proteómicos que permitan extraer información biológica relevante pertinente al análisis, clasificación o predicción de cáncer, el diseño de tratamientos y terapias específicos y el mejoramiento de los métodos de detección como así tambien aportar al entendimiento de la progresión tumoral mediante análisis computacional intensivo.

Tipo de documento: Proyecto
Palabras clave: Reconocimiento de patrones. Expresión de genes. Clasificación multiparamétrica.
Temas: Q Ciencia > QH Historia Natural > QH426 Genética
T Tecnología > TA Ingeniería de asistencia técnica (General). Ingeniería Civil (General)
Unidad académica: Universidad Católica de Córdoba > Facultad de Ingeniería
Google Académico: Citaciones en Google Académico Ver citaciones
URI: http://pa.bibdigital.ucc.edu.ar/id/eprint/307
Ver item Editar ítem

Descargas mensuales a lo largo de los últimos 12 meses

Producción Académica UCC soporta OAI 2.0 con una URL base http://pa.bibdigital.ucc.edu.ar/cgi/oai2

Sistema de Bibliotecas
Universidad Católica de Córdoba
Campus Universitario. Avenida Armada Argentina 3555
Córdoba, Argentina

Sistema Nacional de Repositorios Digitales (SNRD) EPrints Logo